CHAPTER (4) LINES

The line is one-dimensional figure, which has length but no width. In geometry, there are different types of lines such as horizontal and vertical, parallel and perpendicular. The change in y-value divided by the change if x-value in the coordinategrid is called the *slope*. The slope of a line is a measure of the incline of the line. The slope is a number which indicates both direction and steepness of the line.

The slope of the line that passes through the points $(x_1, y_1)(x_2, y_2)$ can be found be the rule $\frac{y_2 - y_1}{x_2 - x_1}$ where $x_2 \neq x_1$

Example

Find the slope of the line that passes through

the points (3,4) and (-1,5)

Solution:

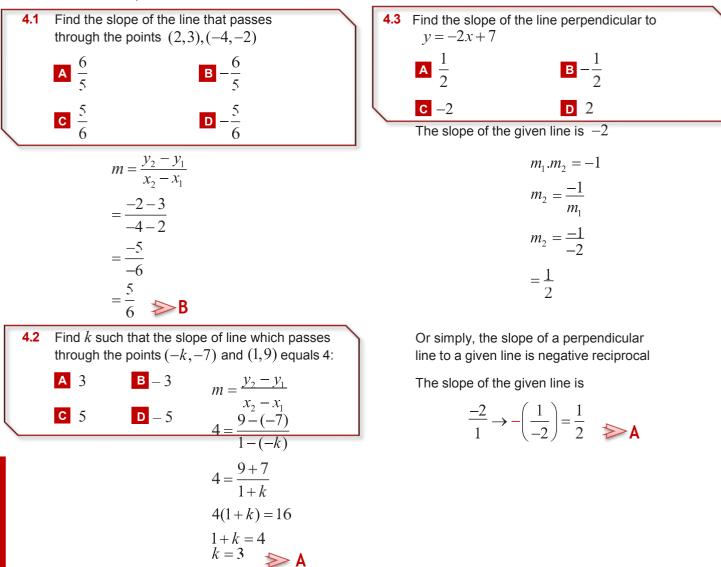
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $= \frac{5 - 4}{-1 - 3}$ $= \frac{1}{-4}$ $= -\frac{1}{4}$

Forms of Equation of a line

Point slope form	$y - y_1 = m(x - x_1)$	
Slope Intercept form	y = mx + b	

- The vertical line has an undefined slope
- The slope of a horizontal line is zero
- Two parallel lines have the same slope
- The product of the slope of two perpendicular lines is

$$(-1)$$
 $m_1.m_2 = -1 \rightarrow m_1 = \frac{-1}{m_2}$



Describe the two lines $l_1: y = -2x + 4$ 4.4 $l_2: 2y = 16x + 8$ A Two parallel lines B Both lines have the same y- intercept C Two perpendicular lines D Both lines have the same x- intercept Write the equations in the form of y = mx + b $l_1 = y = -2x + 4$ $l_2 = \frac{2y}{2} = \frac{16x}{2} + \frac{8}{2}$ $m_1 = -2$ y-intercept = 4 y = 4x + 4 $m_2 = 4$ *v*-intercept = 4 \gg **B** 4.5 Find the equation of the line if its slope is 5 and the y - intercept is -4A v = 5x + 4**B** v = -4x + 5**C** y = -5x - 4 **D** y = 5x - 4y = mx + bm is the slope = 5 *b* is the *y*-intercept = (-4)y = 5x + (-4)=5x-44.6 Find the equation of the line that passes through the point (8,0) and its slope is 4 **A** y = 2x + 8**B** y = 2x - 8**C** v = 4x - 32 **D** y = 4x + 32 $y - y_1 = m(x - x_1)$ v - 0 = 4(x - 8)y = 4x - 32

4.7 Find the equation of the line passes through the points (-3,4), (0,2)A $\frac{2}{3}x+2$ B $\frac{2}{3}x-2$ C $-\frac{2}{3}x+2$ D $-\frac{2}{3}x-2$ Step 1: Step 2: Find the slope Choose one point $\rightarrow (0,2)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $y - y_1 = m(x - x_2)$ $= \frac{4-2}{-3-0}$ $y - 2 = -\frac{2}{3}(x-0)$

Special Case:

 $=-\frac{2}{2}$

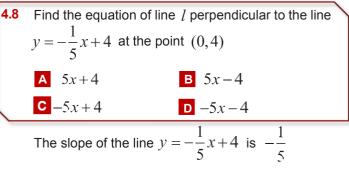
Since one of the points has *x*-coordinate equals zero then the *y*-coordinate will be *b* the *y*-intercept

 $y-2 = -\frac{2}{2}(x)$

 $y = -\frac{2x}{3} + 2$

≫C

$$y = mx + b$$
$$y = -\frac{2x}{3} + 2$$



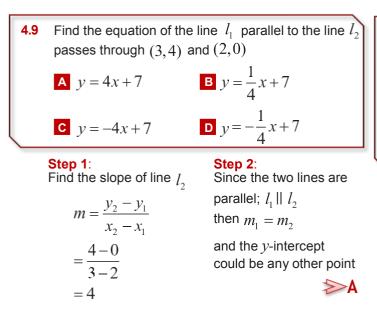
Therefore, the negative reciprocal is 5 is the slope

of the line l

At the point (0,4) means

the *y*-intercept is 4 and by using y = mx + b

the equation is y = 5x + 4



Recall that:

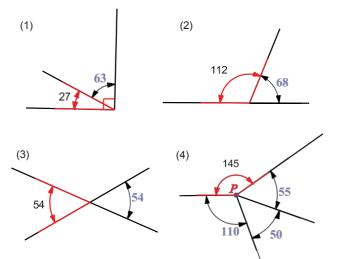
(1) Complementary angles are two angles with a sum of 90°

(2) Supplementary angles are two angles with a sum of 180°

 $\ensuremath{\scriptscriptstyle(3)}$ Vertical angles are two angles opposite to each other,

they are always equal

(4) Angles around a point add up to 360°



Example

If $\angle 1$ and $\angle 2$ are two complementary angles, and $m \angle 1 = 35$ then find $m \angle 2$

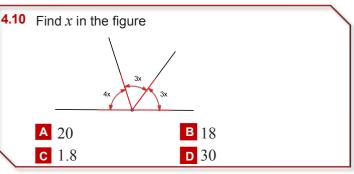
Solution:

Since $\angle 1$ and $\angle 2$ are complementary then

$$m\angle_1 + m\angle_2 = 90$$

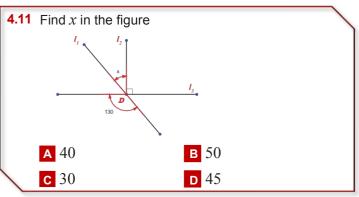
$$35 + m\angle_2 = 90$$

$$m\angle_2 = 55$$



Since the three angles are adjacent on a line and sharing the same vertex then they are supplementry

4x + 3x + 3x = 18010x = 180x = 18 >> B

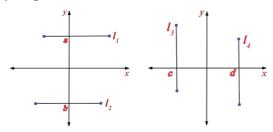


Focus on the two vertical angles formed by l_1 and l_3 x + 90 = 130x = 40

Distance Between Two Parallel Lines

If $l_1: y=a$ and $l_2: y=b$; and $l_1 \mid\mid l_2$ then the distance from l_1 to l_2 is $\mid a-b \mid$

If $l_3: x = l_4: x = d$, and $l_3 \mid\mid l_4$ then the distance from l_1 to l_2 is $\mid c - d \mid$



Example

Find the distance between the lines y = -4 and y = -7

$$d = |a-b| = |-7 - (-4)| = |-3| = 3$$

Example

Find the distance between the lines x = 0 and y = -7

d = |0 - 7|= |-7|= 7

Note that because the distance cannot be negative it doesn't matter which one is the minuend and which one is the subtrahend in the absolute expression

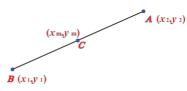
such that |0-7| = |7-0|

Midpoint

• For the two points $p_1(x_1, y_1)$ and $p_2(x_2, y_2)$ the coordinates of their midpoint

$$p_m(x_m, y_m) = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

• If the point *C* is a midpoint of \overline{AB} then $\overline{AC} \cong \overline{BC}$



Example

If *m* is midpoint of xy and xy = 6 then find xmSince *m* is midpoint of \overline{xy}

$$\overline{xm} \cong \overline{my}$$

$$xm = my$$

$$xy = xm + my$$

$$= xm + xm$$

$$6 = 2xm$$

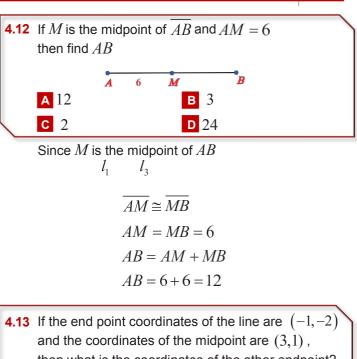
$$3 = xm$$

Example

Find the midpoint between A(4,8) and B(2,12)

Solution:

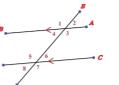
$$midpo \text{ int} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
$$= \left(\frac{4 + 2}{2}, \frac{8 + 12}{2}\right)$$
$$= (3, 10)$$



then what is the coordinates of the other endpoint?
A (7,4)
B
$$(1,-\frac{1}{2})$$

C $(-2,\frac{3}{2})$
D $(4,1)$
midpoint $m = (xm, ym) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
 $p_1(x_1, y_1) \to (-1,-2)$
 $x_m = \frac{x_1 + x_2}{2}$ $y_m = \frac{y_1 + y_2}{2}$
 $3 = \frac{-1 + x_2}{2}$ $1 = \frac{-2 + y_2}{2}$
 $6 = -1 + x_2$ $2 = -2 + y_2$
 $7 = x_2$ $4 = y_2$ $\to p_2(7,4)$

Parallel Lines and Angles



Alternate angles Alternate angles	Corresponding angles	Same Side Same Side
Interior		Interior
$\angle_3 = \angle_5$	$\angle_1 = \angle_5$	$\angle_4 + \angle_5 = 180$
$\angle_4 = \angle_6$	$\angle_2 = \angle_6$	$\angle_3 + \angle_6 = 180$
Exterior	$\angle_8 = \angle_4$	Exterior
$\angle_1 = \angle_7$	$\angle_7 = \angle_3$	$\angle_1 + \angle_8 = 180$
$\angle_2 = \angle_8$		$\angle_2 + \angle_7 = 180$

4.16 One of the following facts is not needed

to prove that

Perpendicular Transversal

If a line is perpendicular to one of the two parallel lines, then it is perpendicular to the other

