Part 1: The Structure of Atoms

Dalton Atomic Theory

- Matter is composed of extremely small particles called atoms.
- Atoms are indivisible and indestructible.
- Atoms of a given element are identical in size, mass, and chemical properties.
- Atoms of a specific element are different from those of another element.
- Different atoms combine in simple whole-number ratios to form compounds.
- In a chemical reaction, atoms are separated, combined, or rearranged.
- When an electric charge is applied, a ray of radiation travels from the cathode to the anode, called a cathode ray.

• Cathode rays are a stream of particles carrying a negative charge. The particles carrying a negative charge are known as electrons.

Robert Millikan used the oil-drop experiment to determine the charge of an electron.

Ernest Rutherford studied how positively charged alpha particles interacted with the solid matter by aiming the particles at a thin sheet of gold foil.

• Although most of the alpha particles went through the gold foil, a few of them bounced back, some at large angles

• Almost all of the atom's positive charge and almost all of its mass are contained in a dense region in the center of the atom called the *nucleus*

- The repulsive force between the positively charged nucleus and positive alpha particles caused the deflections.
- Positively charged particles in the nucleus called *protons*.
- Neutrons, neutral particles in the nucleus.

The number of protons in the nucleus is the *atomic number*

• The sum numbers of protons and neutrons is called the atomic mass number

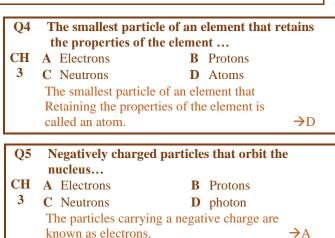
• Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). If an atom gains or loses one or more electrons.

- Atoms with the same number of protons but different numbers of neutrons are called isotopes
- One atomic mass unit (*amu*) is defined as 1/12th the mass of a carbon-12 atom.
- One amu is nearly, but not exactly, equal to one proton and one neutron.
- scientists noticed some substances spontaneously emitted radiation, a process they called *radioactivity*.

• The rays and particles emitted are called radiation.

- A reaction that involves a change in an atom's nucleus is called a *nuclear reaction*. Nuclear reactions can change one element into another element.
- Unstable nuclei lose energy by emitting radiation in a spontaneous process called radioactive decay
- There are three types of radiation: alpha, beta, and gamma

• Alpha radiation is made up of positively charged particles called alpha particles. Each alpha particle contains two protons and two neutrons and has a 2+ charge


- Beta radiation is radiation that has a negative charge and emits beta particles, each beta particle is an electron with a (1-)charge.
- During *Beta decay*, a neutron is converted to a proton and an electron.

Gamma rays are high-energy radiation with no mass and are neutral. They usually accompany alpha and beta radiation.

Q1 First to propose the idea of atoms... CH **A** Aristotle **B** Democritus

- 3 C Dalton **D** Bohr The first person to propose the idea that matter was not infinitely divisible →B
- First to propose the idea of atoms... **Q2**
- **CH A** Aristotle **B** Democritus
 - C Dalton **D** Bohr
- Aristotle disagreed with Democritus because he did not believe empty space could exist $\rightarrow A$

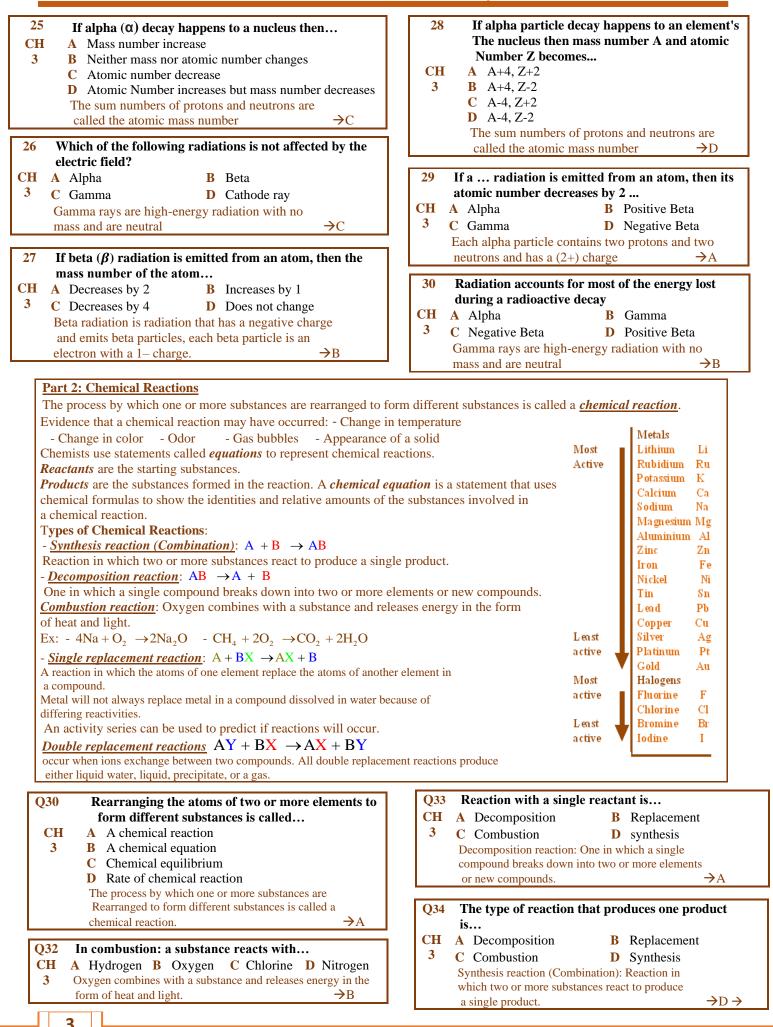
Q3	from Dalton's ato is composed of	mic theory: matter				
CH	A Electrons	B Protons				
3	C Neutrons	D Atoms				
	John Dalton revived the idea of the atom					
	in the early 1800s based on numerous					
	chemical reactions		→D			

known as electrons.

Q6 Cathode ray was a stream of ...

- CH A Positive charge
- 3 **B** Negative charge
 - C Photons
 - **D** Neutral particles
 - Cathode rays are a stream of particles carrying a
 - negative charge.

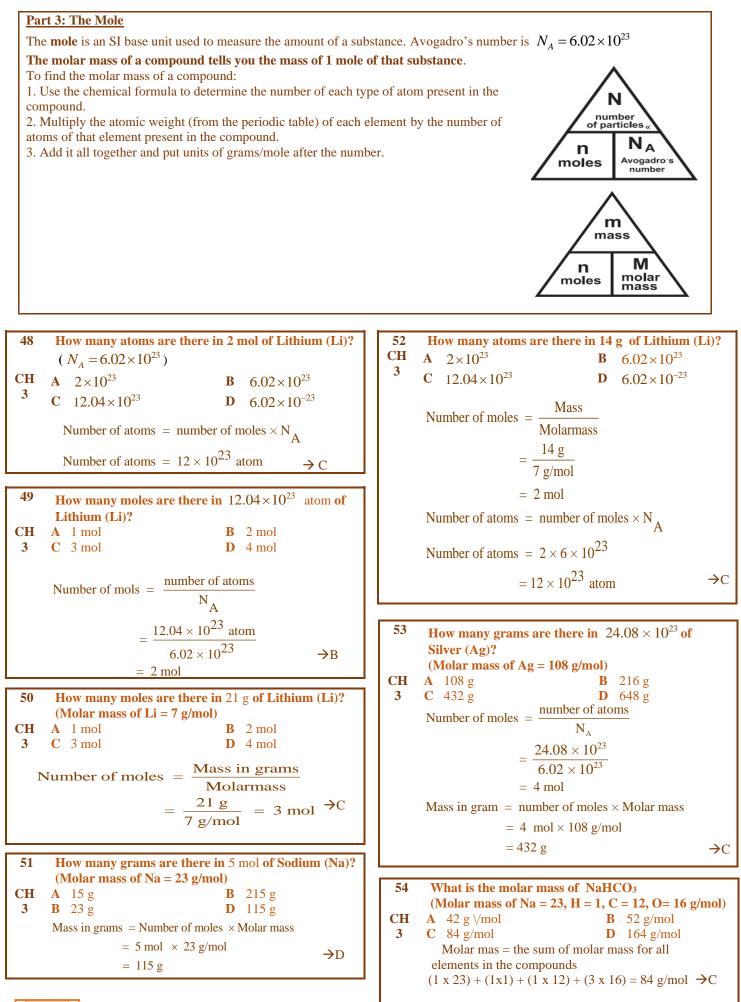
→B


3

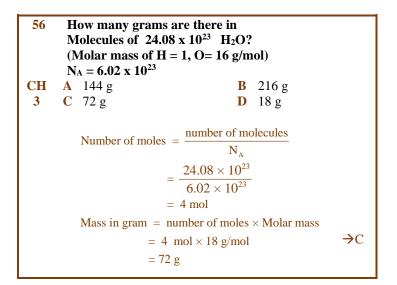
CHAPTER 3: General Chemistry

Q7	Who discovered the electron
CH	A Dalton B Thomson
-	
3	C Henry D Lewis
	Thomson identified the first subatomic
	particle—the electron \rightarrow B
Q8	Atom is a uniform, positively charged sphere
Q0	
	containing electrons
CH	A Bohr's model B Rutherford's model
3	C Thomson's model D Dalton's model
	Thomson's plum pudding model of the atom
	states that the atom is a uniform, positively
	charged sphere containing electrons \rightarrow C
Q 9	Millikan calculated the charge of
CH	A Proton B Neutron
-	
3	C Photon D Electron
	Robert Millikan used the oil-drop apparatus
	shown below to determine the charge of an
	electron →D
Q10	What does the deflection of a few alpha particles
	back to the source when Rutherford focused
	the radiation toward the gold sheet indicates
СН	A Atom carries a positive charge
-	
3	B Atoms mostly consist of empty space
	C The presence of a dense mass in the nucleus
	D The presence of negative electrons
	The repulsive force between the positively charged
	nucleus and positive alpha particles caused the
	deflections. $\rightarrow C$
011	Which of the following is wrong according to the
Q11	
	atom
Q11 CH	atom A Atom has no empty space
	atom
СН	atomA Atom has no empty spaceB Different elements consist of different atoms
СН	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties
СН	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place
СН	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties
CH 3	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D
CH 3 Q12	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D
CH 3 Q12 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no.
CH 3 Q12	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no.
CH 3 Q12 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no.
CH 3 Q12 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no.
CH 3 Q12 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no.
CH 3 Q12 CH	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they
CH 3 Q12 CH	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged)
CH 3 Q12 CH	 atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. →D Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they
CH 3 Q12 CH 3	atomA Atom has no empty spaceB Different elements consist of different atomsC The smallest particle retains the element propertiesD Its mass is concentrated in a small condensed placeAtoms are mostly empty space. $\rightarrow D$ Atom is electrically neutral becauseA Protons no. = Neutrons no.B Atomic no. = Mass no.C Protons no. = Electrons no.D Electrons no. = Mass no.Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged).
CH 3 Q12 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). Articles that are in an atom's nucleus and
CH 3 Q12 CH 3 Q13	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass
CH 3 Q12 CH 3 Q13 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and protons
CH 3 Q12 CH 3 Q13	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass
CH 3 Q12 CH 3 Q13 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons (negatively charged). A Electrons and protons B Electrons and protons B Electrons and neutrons
CH 3 Q12 CH 3 Q13 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and protons B Electrons and neutrons C Protons only
CH 3 Q12 CH 3 Q13 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and neutrons C Protons only D Protons and neutrons
CH 3 Q12 CH 3 Q13 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons The sum numbers of protons and neutrons is
CH 3 Q12 CH 3 Q13 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons
CH 3 Q12 CH 3 Q13 CH 3	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons (negatively charged). A Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number
CH 3 Q12 CH 3 Q13 CH 3 Q14	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number →D
CH 3 Q12 CH 3 Q13 CH 3 Q14 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. Atom is electrically neutral because A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons and protons B Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number →D
CH 3 Q12 CH 3 Q13 CH 3 Q14	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons and protons B Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number →D
CH 3 Q12 CH 3 Q13 CH 3 Q14 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). →C Particles that are in an atom's nucleus and represent most of the atom's mass A Electrons and protons B Electrons only D Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number →D
CH 3 Q12 CH 3 Q13 CH 3 Q14 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons and protons B Electrons and protons B Electrons and neutrons C Protons only D Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number →D
CH 3 Q12 CH 3 Q13 CH 3 Q14 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons and protons B Electrons and protons B Electrons and neutrons C Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number A Protons B Electrons C Protons and photons B Electrons C Protons and photons D Protons and neutrons The mass number is the number of A Protons B Electrons C Protons and photons D Electrons C Protons and neutrons The mass number is the number of A Protons B Electrons
CH 3 Q12 CH 3 Q13 CH 3 Q14 CH	atom A Atom has no empty space B Different elements consist of different atoms C The smallest particle retains the element properties D Its mass is concentrated in a small condensed place Atoms are mostly empty space. A Protons no. = Neutrons no. B Atomic no. = Mass no. C Protons no. = Electrons no. D Electrons no. = Mass no. Atoms are electrically neutral because they have equal numbers of protons (positively charged) and electrons (negatively charged). and electrons and protons B Electrons and protons C Protons and neutrons The sum numbers of protons and neutrons is called the atomic mass number →D The mass number is the number of A Protons B Electrons C Protons C Protons and photons

Q15	In nitrogen atom $\begin{pmatrix} 14\\7N \end{pmatrix}$, there are						
СН	1						
3	B 7 protons and 7 neutrons						
	C 14 neutronsD 14 protons and 7 electrons						
	The sum numbers of protons and neutrons are						
	called the atomic mass number $\rightarrow B$						
16							
CH	In element (²³ ₁₁ Na) the protons number is A 23 B 12 C 11 D 13						
	A 23B 12C 11D 13Number of protons = atomic number \rightarrow C						
17	Neutrons number in element $({}^{132}_{55}Cs)$ is						
CH	A 55 B 77 C 132 D 187						
3	The number of neutrons = mass noprotons no. \rightarrow B						
18	Isotopes of an element are different in						
CH	A Atomic no. B Electrons no.						
3	C Neutrons no. D Avogadro's no.						
	Atoms with the same number of protons but						
	different numbers of neutrons are called isotopes $\rightarrow C$						
19	Isotopes are equal in						
СН	A Proton no. B Electrons no.						
3	C Neutrons no. D Atomic size						
	Atoms with the same number of protons but						
	different numbers of neutrons are called isotopes $\rightarrow A$						
20	A reaction that involves a change in an atom's						
	nucleus and changes an element into a new						
CII	element						
CH 3	A Synthesis reaction.B Decomposition reactionC Nuclear reaction.D Electrolysis reaction						
	A reaction that involves a change in an atom's nucleus						
	is called a nuclear reaction that can change one						
	element into another element. $\rightarrow C$						
21	Unstable nuclei lose energy by emitting radiations						
	in a spontaneous process called decay.						
CH	A Photic/photodegrading. B Nuclear						
3	C Natural D Radioactive						
	Unstable nuclei lose energy by emitting radiation in a spontaneous process called radioactive decay. $\rightarrow D$						
	spontaneous process cancul radioactive decay. 7D						
22	Particles that contain two protons and two neutrons						
СН	areA AlphaB Positive Beta						
СП 3	1						
	CNegative BetaDGammaEach alpha particle contains twoprotons and two						
	neutrons and has a $(2+)$ charge $\rightarrow A$						
23 CH	A particle with a 1- charge						
CH 3	A Alpha B Beta C Neutron D Gamma Beta radiation is radiation that has a negative charge						
	and emits beta particles, each beta particle is an						
	electron with a 1– charge. $\rightarrow B$						
24	High-energy radiation						
CH	A Alpha B Beta C Neutron D Gamma						
3	Gamma rays are high-energy radiation with no mass						
	and are neutral. $\rightarrow D$						
	2 L						


CHAPTER 3: General Chemistry

CHAPTER 3: General Chemistry


<u> </u>	
	The type of reaction $2Na + Cl_2 \rightarrow 2NaCl$ is
-	A Decomposition B Replacement
	C Combustion D Synthesis
	Synthesis reaction (Combination): Reaction in
	which two or more substances react to produce
	a single product. $\rightarrow D$
Q36	Which of the following reaction a decomposition reaction
-	· ·
CH 3	$\mathbf{A} \mathbf{N}_2 + \mathbf{3H}_2 \rightarrow \mathbf{2NH}_3$
3	B $2\mathbf{KClO}_3 \rightarrow 2\mathbf{KCl} + 3\mathbf{O}_2$
	$\mathbf{C} \mathbf{Cd}(\mathbf{NO}_3)_2 + \mathbf{H}_2\mathbf{S} \rightarrow \mathbf{CdS} + 2\mathbf{HNO}_3$
	$\mathbf{D} \mathbf{C_2H_6} + 2\mathbf{O_2} \rightarrow 2\mathbf{CO_2} + 3\mathbf{H_2}$
	Decomposition reaction: One in which a single
	compound breaks down into two or more elements or new compounds. $\rightarrow B$
	new compounds. $\rightarrow B$
Q37	Which of the following reaction a decomposition reaction
СН	$\mathbf{A} \mathbf{H}_2 + \mathbf{O}_2 \rightarrow \mathbf{H}_2\mathbf{O}$
3	B Na + H ₂ O \rightarrow NaOH + H ₂
	C NaHCO ₃ \rightarrow NaOH + H ₂ O + CO ₂
	D $C_4H_8 + O_2 \rightarrow CO_2 + H_2O$
	Decomposition reaction: One in which a single
	compound breaks down into two or more elements or
	new compounds. \rightarrow C
Q38	Which of the following reaction is a single replacement
XUU	reaction
СН	A $2Fe + 3Br_2 \rightarrow 2FeBr_3$
3	
•	B $\mathbf{K}(s) + \mathbf{NaCl}(aq) \rightarrow \mathbf{KCl}(aq) + \mathbf{Na}(s)$
	$\mathbf{C} \mathbf{2NH}_3 \rightarrow \mathbf{N}_2 + \mathbf{3H}_2$
	D NaCl(aq) + AgNO3(aq) \rightarrow NaNO3 (aq) + AgCl(s)
	A reaction in which the atoms of one element replace the
	atoms of another element in a compound. $\rightarrow B$
Q39	Which of the following reaction is a double replacement
20)	reaction
СН	
СП 3	$\mathbf{A} \mathbf{C_6H_{12} + 9 O_2} \rightarrow 6 \operatorname{CO_2} + 6 \operatorname{H_2O}$
-	B $O_3 \rightarrow O + O_2$
	$C CaCO_3 \rightarrow CaO + CO_2$
	D Na ₃ PO ₄ (<i>aq</i>) + 3(KOH) ₃ (<i>aq</i>) \rightarrow NaOH(<i>aq</i>) + K ₃ PO ₄ (<i>s</i>)
	A reaction in which the atoms of one element replace the
	atoms of another element in a compound. $\rightarrow D$
40	Which of the following reaction is a combustion
ΨV	reaction?
СН	
3	$\mathbf{A} \mathbf{C}_{6}\mathbf{H}_{12} + 9 \mathbf{O}_{2} \rightarrow 6 \mathbf{CO}_{2} + 6 \mathbf{H}_{2}\mathbf{O}$
~	B $2\mathbf{H}_2\mathbf{O} \rightarrow 2\mathbf{H}_2 + \mathbf{O}_2$
	$C CaCO_3 \rightarrow CaO + CO_2$
	D Na ₃ PO ₄ (aq) + 3(KOH) ₃ (aq) \rightarrow NaOH(aq) + K ₃ PO ₄ (s)
	Combustion reaction: Oxygen combines with
	a substance $\rightarrow A$
41	The separation of the components of sodium chloride (NaCl)
-	is
	A Decomposition B Replacement
	C Combustion D Synthesis
	Decomposition reaction: One in which a single
	compound breaks down into two or more elements
	or new compounds. $\rightarrow A$

42 The type of reaction $CaCO_3 \rightarrow CaO + CO_2$
is CH A Decomposition B Replacement
3 C Combustion D Synthesis
Decomposition reaction: One in which a single
compound breaks down into two or more elements or new compounds. $\rightarrow A$
A
 43 Which of the following reactions can occur? CH A Na + KCl →
$\begin{array}{ccc} CH & A & Na + KCI \rightarrow \\ 3 & B & K + NaCl \rightarrow \end{array}$
$C Br_2 + NaCl \rightarrow$
D $I_2 + \text{NaCl} \rightarrow$
An activity series can be used to predict if
reactions will occur. \rightarrow B
Q44 Which of the following reactions cannot
$\begin{array}{ccc} & \text{occur}? \\ \text{CH} & \text{A} & \text{Li} + \text{KCl} & \rightarrow \end{array}$
$\begin{array}{ccc} CH & A & Li + KCI \rightarrow \\ 3 & B & K + NaCl \rightarrow \end{array}$
$\mathbf{C} \mathbf{Na} + \mathbf{CaCl}_2 \rightarrow $
D Li + NaCl \rightarrow
An activity series can be used to predict if reactions will occur. $\rightarrow C$
reactions will occur. $\rightarrow C$
Q45 Which of the following reactions represent
combustion and synthesis reactions at the same time?
CH A 2Fe + 3Br ₂ \rightarrow 2FeBr ₃
$3 \qquad B 2Ca + O_2 \rightarrow 2CaO$
$\mathbf{C} \mathbf{CH}_4 + \mathbf{O}_2 \rightarrow \mathbf{CO}_2 + \mathbf{H}_2\mathbf{O}$
D Li + NaCl \rightarrow LiCl + Na
Synthesis reaction (Combination): Reaction
in which two or more substances react to produce a single product.
Combustion reaction : Oxygen combines with
a substance $\rightarrow B$
46 Predict the results of the following reaction
$Na + AlCl_3 \rightarrow$
$\begin{array}{ccc} \mathbf{CH} & \mathbf{A} & \operatorname{NaCl} + \operatorname{AlCl}_2 \\ 3 & \mathbf{D} & \operatorname{NaCl} + \operatorname{Al}_2 \end{array}$
B NaCl ₂ + Al
$ \begin{array}{l} \mathbf{C} & 3\mathrm{NaCl} + \mathrm{Al} \\ \mathbf{D} & \mathrm{NaCl}_3 + \mathrm{Al} \end{array} $
An activity series can be used to predict if
reactions will occur. →C
47 Which of the following reaction is a double
replacement reaction
$\begin{array}{ccc} \mathbf{CH} & \mathbf{A} & \mathbf{Ca} + \mathbf{O}_2 \end{array} \rightarrow \mathbf{CaO} \end{array}$
$\mathbf{B} \mathbf{O} + \mathbf{O}_2 \rightarrow \mathbf{O}_3$
C CaO + CO ₂ \rightarrow CaCO ₃
D NaOH _(aq) + HCl _(aq) \rightarrow NaCl _(aq) + H ₂ O ₍₁₎
A reaction in which the atoms of one
Element replace the atoms of another
element in a compound. $\rightarrow D$
1 The reaction $\mathbf{H}_2\mathbf{CO}_3 \rightarrow \mathbf{CO}_2 + \mathbf{H}_2\mathbf{O}$ is
Do A Combination B Decomposition
It? C Combustion D Replacement

5

55	How many molecules in	360g of	$\mathbf{C}_{6}\mathbf{H}_{12}\mathbf{O}_{6}$					
	(Molar mass of H = 1, C = 12, O= 16 g/mol)							
	$N_A = 6.02 \times 10^{23}$							
	A 2×10^{23}	В	24.08×10^{23}					
3	C 12.04×10^{23}	D	18.06×10^{23}					
	Number of moles $= \frac{1}{Mol}$	Mass lar mass						
	$=\frac{360}{180 \text{ g}}$	0 g						
	- <mark>180</mark> g	g/mol						
	= 2 mo	1						
Number of Molecules = number of moles $\times N_A$								
Number of Molecules = $2 \times 6.02 \times 10^{23}$								
	= 12	2.04×10^{-10}	²³ Molecule	→C				

57	How many moles of oxygen (O) in 2 moles of						
	Carbonic acid H ₂ CO ₃						
СН	A 1 mol	B 2 mol					
3	C 3 mol	D 6 mol					
Mole ratio between H_2CO_3 and O is 1:3 $\rightarrow D$							

58	How many moles of carbon (C) in 88 grams of				
	propane C3 H8				
СН	A 1 mol	B 2 mol			
3	C 3 mol	D 6 mol			
	Mole ratio between	$1 C_3 H_8$ and C is 1:3 $\rightarrow D$			

2	2 How many grams of mercury Hg in 3 mole of mercury)(Molar mass of Hg = 200 g/mol)				
	A 200 g	B 300 g			
It?	C 600 g	D 1200 g			
3	How many moles of le mass of Pb = 207 g/mol)	ad Pb in 414g of lead (Molar			
Do	A 1 mol	B 2 mol			

D 4 mol

It?

C 3 mol

How many molecules in 5 moles of ammonia NH₃ (Molar mass of H = 1, N = 14 g/mol) 4 $N_A = 6.02 \times 10^{23}$ **Do** A 6.02×10^{23} It? **B** 12.04×10^{23} C 30.1×10²³ **D** 60.2×10^{23} How many moles in 6.02×10^{22} molecules of ammonia NH₃? 5 (Molar mass of H = 1, N = 14 g/mol) $N_A = 6.02 \times 10^{23}$ Do A 1 mol It? **B** 0.1 mol C 2 mol **D** 0.2 mol What is the molar mass of H₃PO₄ phosphoric 6 Acid. (Molar mass of H = 1, P = 31, O= 16 g/mol) Do A 310 g/mol It? B 98 g/mol C 196 g/mol **D** 49 g/mol How many moles of lithium hydroxide LiOH in 7 72 g of LiOH? (Molar mass of H = 1, Li = 7, O= 16 g/mol)

- Do A 1 mol It?
 - **B** 2 mol
 - C 3 mol
 - **D** 4 mol
 - 8 How many molecules in 96g of ethanoic acid CH₃OOH

(Molar mass of H = 1, C = 12, O= 16 g/mol) $N_A = 6.02 \times 10^{23}$

- **A** 2×10^{23}
- **B** 24.08×10^{23} It? C 12.04×10^{23} 18.06×10^{23} D

How many grams of carbon dioxide CO2 in 12.04×10^{22} molecules of CO₂?

- 9 (Molar mass of H = 1, Li = 7, O= 16 g/mol) $N_A = 6.02 \times 10^{23}$
- **Do A** 44g

Do

- It? B 4.4g
 - C 88g
 - **D** 8.8g

Part 4: Stoichiometry

What is Stoichiometry? Stoichiometry is the study of quantitative relationships between the amounts of reactants used and the amounts of products formed by a chemical reaction. Stoichiometry is based on the law of conservation of mass. (The mass of reactants equals the mass of the products) - Stoichiometry is based on the chemical equation and mole ratios between reactants and products **Steps for balancing equations** -Count the atoms of the elements in the reactants. If a reaction involves identical polyatomic ions in the reactants and products, count the ions as if they are elements -Count the atoms of the elements in the products Change the coefficients to make the number of atoms of each element equal on both sides of the equation. Never change a subscript in a chemical formula to balance an equation because doing so changes the identity of the substance. - Write the coefficients in their lowest possible ratio. The coefficients should be the smallest possible whole numbers. **Limiting Reactants** • Reactions proceed until one of the reactants is used up and one is left in excess. • The limiting reactant limits the extent of the reaction and, thereby, determines the amount of product formed. • The excess reactants are all the leftover unused reactants. **Percent Yield** • Laboratory reactions do not always produce the calculated amount of products. • Reactants stick to containers. • Competing reactions form other products. •The *theoretical yield* is the maximum amount of product that can be produced from a given amount of reactant. • The *actual yield* is the amount of product actually produced when the chemical reaction is carried out in an experiment. • The percent yield of a product is the ratio of the actual yield expressed as a percent. Percent Yeild = $\frac{\text{Actualyeild}}{\text{Theoriticalyeild}} \times 100\%$ • Percent yield is important in the cost-effectiveness of many industrial manufacturing processes 59 The mole ratios can be determined only if what? 64 The amount of product that can be produced CH A All the reactants are present in unequal amounts from a given amount of reactants based on **B** The reactants do not have coefficients 3 stoichiometric calculations is: С The products do not have coefficients CH A Actual yield **D** The equation is balanced 3 **B** Percent yield Mole ratio depends on balanced chemical equation $\rightarrow D$ C Theoretical yield **D** Stoichiometric yield 60 The coefficient x in the balanced chemical The theoretical yield is the maximum amount equation $N_2 + xH_2 \rightarrow 2NH_3$ is ... of product that can be produced from a given CH **B** 6 **A** 3 →C amount of reactant. 3 **C** 2 **D** 12 $N_2 + 3H_2 \rightarrow 2NH_3$ $\rightarrow A$ 65 The mass of the final product in a chemical reaction is based on what? Which of the following is the correct mole ratio for 61 CH A The amount of excess reactant the following equation? $Al(s) + Br_2(l) \rightarrow AlBr_3(s)$ 3 **B** The amount of limiting reactant CH A 2 mol Al : 3 mol Br **C** The presence of a catalyst 3 **B** $3 \mod Br_2 : 2 \mod Al$ **D** The amount of O₂ present C 2 mol AlBr₃ : 1 mol Br₂ →B The amount of limiting reactant **D** $2 \mod Br : 2 \mod Al$ Balanced chemical equation is 10 How many moles of CO₂ will be produced when $2Al(s) + 3Br_2(l) \rightarrow 2AlBr_3(s)$ 4 moles of C₄H₁₀ reacted with enough amount →B 3 mol Br₂:2 mol Al of oxygen. 62 How many moles of CO₂ will be produced in $2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$ the following reaction if the initial amount of CH₄ were 2 moles? $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ **Do A** 2 **B** 4 **CH** A 3 C 2 **B** 4 **D** 1 It? C 8 **D** 16 3 The mole ratio between CH₄ and CO₂ is 1:1 $\rightarrow C$ 63 Mass of reactants and mass of products in a chemical reaction... CH A Are not equal **B** Are both solid 3 C Are equal **D** are unrelated the law of conservation of mass. (The mass of

ofthe

	Chapter 3: Do It Answer key								
1	1 2 3 4 5 6 7 8 9 10								
В	С	В	С	В	В	С	С	D	D