

Statements and Negations

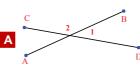
- Statement is a sentence that could be true (T) or false (F). Usually represented by p, q,r, s
- The negation of a statement p is the opposite of the statement. The symbol $\sim p$ and is read 'not p'.

P	~p
Т	F
F	T

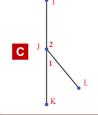
Counter example is an example that shows a conjecture is incorrect

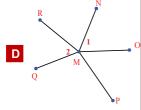
Example

If $x^2 = 36$ then x = 6 the counter example is x = -6 since $(-6)^2 = 36$


- **9.1** Find a counter example for the statement: if x is a real number then $x^2 \ge x$
 - $\mathbf{A} \quad x = 2$
- **B** x = -2
- $x = \frac{3}{2}$
- $x = \frac{1}{2}$

By trying the options:


	х	x^2	$x^2 \ge x$
A	2	4	Т
В	-2	4	Т
С	3 2	15 4	Т
D	$\frac{1}{2}$	$\frac{1}{4}$	F



9.2 Find a counter example for the statement If $\angle 1$ and $\angle 2$ share the same vertex then they are adjacent angles

Angles $\angle 1$ and $\angle 2$ share the same vertex in all the four options but they don't share a common side in option D, therefore it is a counter example.

≫D

- 9.3 Determine the false statement
 - A Parallelogram is a quadrilateral
 - f B The measure of a right angle is 90°
 - The number 804 divides 3
 - The sum of two complementary angles is 180

Supplementary angles sum up to 180° Complementary angles sum up to $= 90^{\circ}$

- 9.4 Which statement has a false negation
 - **A** $8-2\times 3=24$
 - **B** The measure of an acute angle is $> 90^{\circ}$
 - $\frac{3}{11} + \frac{5}{11} = \frac{8}{22}$
 - \mathbf{D} 2924 is divisible by 4

The divisibility rule of 4 states that the first two digits should be divisible by $4 \rightarrow 24 \div 4 = 6$ "2924 is divisible by 4" is a true statement and its negation is false \triangleright

Compound Statement

Conjunction: Connect two or more statements with ''and'' $p \wedge p$, read as p and q

Disjunction: correct two or more statements with $`or" p \lor p$, read as $p \ or \ q$

Conditional is an if then statement $p \to q$. Read as: if p then q or p implies q

Hypothesis: is the part p Conclusion: is the part q

p	q	$p \wedge p$	$p \lor p$	$p \rightarrow p$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	F	Т	Т
F	F	F	F	Т

- **9.5** If p and q are false, which of the following statement is true
 - $A p \wedge p$
- $\triangleright p \rightarrow p$
- $p \rightarrow \sim q$
- $\mathbf{p} \lor p$

Option C:

p	q	$\sim q$	$p \rightarrow \sim p$
F	F	Т	F→T » T

Find truth values of x and y in following table

p	q	$\sim p \wedge p$
Т	Т	x
Т	F	F
F	Т	Т
F	F	у

- $\mathbf{A} \ x = \mathbf{T}, y = \mathbf{F}$ $\mathbf{B} \ x = \mathbf{T}, y = \mathbf{T}$
- x = F, y = F x = F, y = T

I	י	~ <i>p</i>	q	$\sim p \wedge p$
Т	1	F	T	F <i>→x</i>
F		Т	F	F <i>→y</i>

Let *p* is the hypothesis: $m\angle A = 115^{\circ}$ and q is the conclusion: $\angle A$ is obtuse

Statement	How to write it	Example	Symbol	Truth value
Conditional	Use the given hypothesis and conclusion	if $m \angle A = 115^{\circ}$ then $\angle A$ is obtuse	$p \rightarrow q$	Т
Converse	Exchange the hypothesis and the conclusion	$_{\text{if}} \angle A$ is obtuse then $m \angle A = 115^{\circ}$	$q \rightarrow p$	F
Inverse	Negate both the hypothesis and the conclusion of the conditional	if $m \angle A \neq 115^{\circ}$ then $\angle A$ is not obtuse	~ <i>p</i> →~ <i>q</i>	F
Contrapositive	Negate both the hypothesis and the conclusion of the converse	if A is not obtu then $m \angle A \neq 115^\circ$	$\sim q \rightarrow \sim p$	Т

Find the contrapositive of the conditional

Statement:

If the figure is a square, then it is a quadrilateral

- A If the figure is a quadrilateral, then it is a square
- B If the figure is not a square then it is not a quadrilateral
- If the figure is not a quadrilateral, then it is not a square
- If the figure is not a quadrilateral, then it is a square

Conditional:

Square → quadrilateral

$$p \rightarrow q$$

Contrapositive:

$$\sim q \rightarrow \sim p$$

not quadrilateral → not square >> C

- Find the inverse of the conditional statement if x = 3 then $x^2 = 9$
 - A If $x \neq 3$ then $x^2 \neq 9$
- $\mathbf{B} \text{ If } x^2 \neq 9 \text{ then } x \neq 3$
 - \mathbf{c} If x =

Conditional

$$_{\chi} = 3 \rightarrow _{\chi}^{2} = 9$$

$$p \rightarrow q$$

Inverse

$$\sim p \rightarrow \sim q$$

$$x \neq 3 \rightarrow x^2 \neq 9$$

Indirect Proof

Step 1:

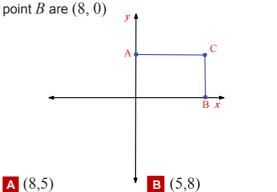
State as a temporary assumption which is the opposite (negation) of what you want to prove.

Step 2:

Show that this assumption leads to a contradiction

Conclude that the temporary assumption must be false and that what you want to prove is true

- **9.9** Use the indirect proof to show that the following statement is true: If 2x < 18 then x < 9
 - A $x \leq 9$
- B $\chi \ge 9$
- **c** x < 9
- D x > 9

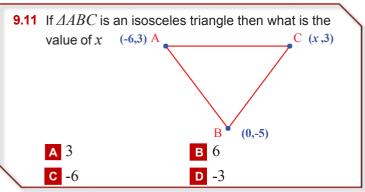

The conclusion is x < 9

The assumption is the negation is $x \ge 9 \gg \mathbf{B}$

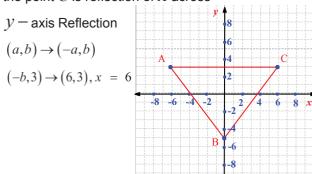
Proofs Using Coordinate Geometry

You will use coordinate with variables to write a coordinate proof

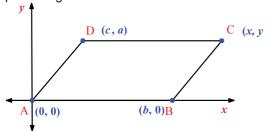
- You can prove geometric relationships using variables coordinates for figures in the coordinate plane.
- All points that lies on the same horizontal line have the same y-coordinate.
- **9.10** Find the coordinates of the point C if the coordinates of the point A are (0, 5) and the coordinates of the point B are (8, 0)

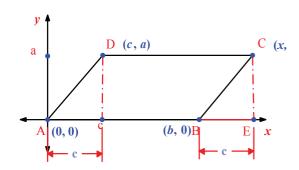


D(0.8)


• Since A and C are on the same horizontal line then they have the same y-coordinate $\rightarrow 5$

c (5,0)


• Since B and C are on the same vertical line then they have the x-coordinate \rightarrow 8 $C(8,5) \Longrightarrow A$


By graphing the triangle on the coordinate grid then y axis is an axis of symmetry the point C is reflection of A across

9.12 What are the coordinates of the point C if ABCD is a parallelogram

- (b+c,a) (c,a)
- Since D and C are on the same horizontal line $\rightarrow y = a$

• The x coordinate of point B is b The x coordinate of point E is b + c

$$(b+c,a)$$