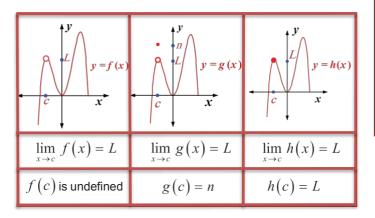
CHAPTER (18) Limits & Continuity

CHAPTER (18) LIMITS & Continuity

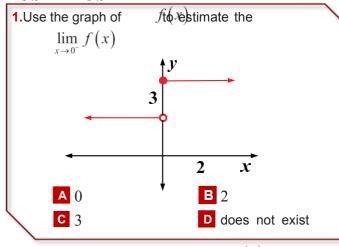
• The limit of a function f(x) as x approaches c does not depend on the value of the function at point c



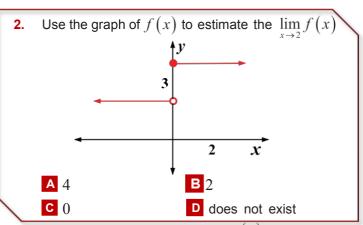
One side limit	Read as
$\lim_{x \to c^-} f(x) = L_1$	The limit of $f(x)$ as x approaches c from left is L_1
$\lim_{x \to c^+} f(x) = L_2$	The limit of $f(x)$ as x approaches c from right is L_2

• The limit of a function f(x) as x approaches c exists if and only if both one-sided limits exist and are equal. That is if

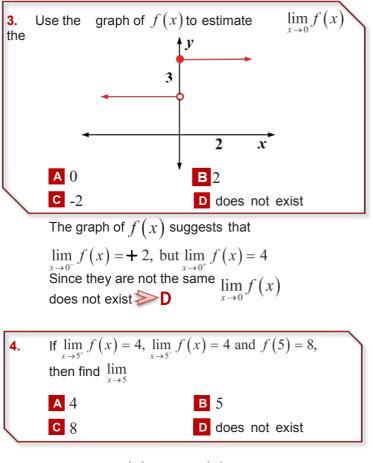
 $\lim_{x \to c^-} f(x) = \lim_{x \to c^-} f(x) = L, \text{ then } \lim_{x \to c} f(x) = L \to \text{ exist}$ $\lim_{x \to c^-} f(x) \neq \lim_{x \to c^-} f(x), \text{ then } \lim_{x \to c} f(x) \text{ does not exist}$



Because the left-hand limit of f(x) as xapproaches **0** is **2** and the limit does not depend on the value of the function at $x \begin{bmatrix} f(0)=4 \end{bmatrix}$, then $\lim_{x\to 0^{-}} f(x) = 2$



The left and right-hand limits of f(x) as x approaches 2 are the same and equal 4, $\lim_{x \to a} f(x) = 4$



Since $\lim_{x \to 5^+} f(x) = \lim_{x \to 5^-} f(x) = 4$ and the limit does not depend on f(5)then the $\lim_{x \to 5} f(x) = 4$ \Longrightarrow **A**

Continuity

The graph of a *continuous function* has no breaks, holes or gaps. You can trace the graph of a continuous function without lifting your pencil.

Types of discontinuity				
Infinite discontinuity	Jump discontinuity	Removable discontinuity		
The function values increases or decreases indefinitely as <i>x</i> approaches <i>c</i> from the left and right	The limits of the function as x approaches c from the left and right exist but have two distinct values	The function is continuous everywhere except for a hole at $x = c$		

• To determine continuity of a function f(x)at a point x = a, f(x) is continuous at x = aif and only if $f(a) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L$

5.	Find \boldsymbol{k} such that then find $f(\boldsymbol{x})$ is continuous at $\boldsymbol{x} = 1$	
	$f\left(x\right) = \begin{cases} 2x^2 + 7\\ kx & -1 \end{cases}$	$x \ge 1$ $x < 1$
	A 10	в 9
	C 2	D 7
	f(x) is continuous at $x = 1$ if and only if	

$$f(1) = \lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x)$$

$$f(1) = \lim_{x \to 1^+} (2x^2 + 7) = \lim_{x \to 1^-} kx - 1$$

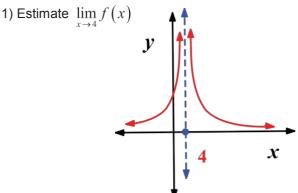
$$2(1) + 7 = k(1) - 1$$

$$9 = k - 1 \rightarrow k = 10$$

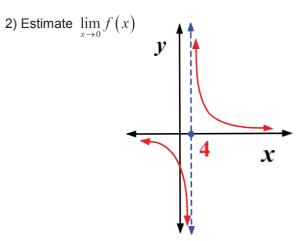
Limit Fail to Exist

Another way a limit can fail to exist is when the value of f(x) as x approaches c does not approach a fixed finite value. Instead the value of f(x) increases without bound indicated by ∞ , or decreases without bound, indicated by $-\infty$

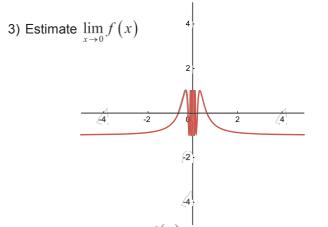
Example



Solution: Because as *x* gets closer to **4** the function value of the graph increase, both sides tend to ∞ , therefore the $\lim_{x \to 4} f(x) = \infty$



Solution: Because as *x* gets closer to **4**, the function values from the left decrease and the function values from the right increase. In this case we cannot describe the behaviour of f(x) at **4** using single expression $\rightarrow \lim_{x \to 4} f(x)$ does not exist



Solution: The graph of f(x) suggests that as x gets closer to 0, the corresponding function values oscillate between -1 and 1 continuously, therefore $\lim_{x\to 0} f(x)$ does not exist

Summary: Why limits at a point does not exist The limit of f(x) as *x* approaches c does not exist if:

- *f*(*x*) approaches a different value from the left of *c* than from the right
- f(x) increases or decreases without bound from the left and / or the right of c

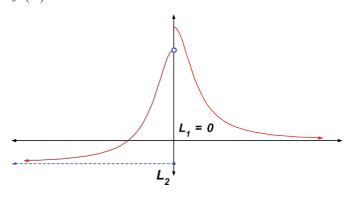
f(x)

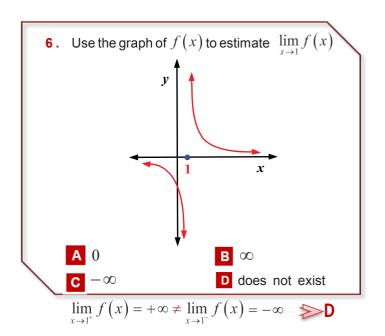
Limits at Infinity

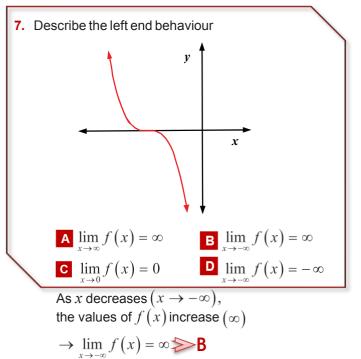
If the value of f(x) approaches a unique number L_1 as x increases, then $\lim_{x \to \infty} f(x) = L_1$

If the value of f(x) approaches a unique number L_2 as x decreases, then $\lim_{x \to -\infty} f(x) = L_2$

f(x) oscillates between two fixed values



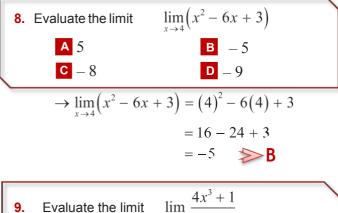




CHAPTER (18) LIMITS & Continuity

Evaluating Limits Algebraically

- Limits of constant functions at any point *c* is the constant value of the function $\lim_{k \to 0} k = k$
- The limit of the identity function at any point *c* is *c* lim *x* = *c*
- You can use substitution to evaluate limits $\lim_{x \to a} f(x) = f(c)$
- If you evaluate the limit of a rational function and reach the form $\frac{0}{0}$ you should try to simplify the expression algebraically by factoring and dividing out a common factor or multiply by the conjugate



5. Evaluate the limit
$$\lim_{x \to -2} \frac{1}{x - 5}$$

A $\frac{-31}{7}$
B $\frac{28}{7}$
C $\frac{-28}{7}$
D $\frac{31}{7}$
 $\lim_{x \to -2} \frac{4x^2 + 1}{x - 5} = \frac{4(-2)^3 + 1}{-2 - 5}$
 $= \frac{31}{7}$

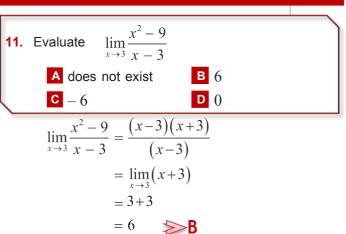
10. Evaluate the limit
$$\lim_{x \to 7} \frac{\sqrt{2x + 2} - \sqrt{5}}{x - 6}$$

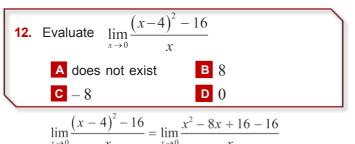
A $4 + \sqrt{5}$
B $4 - \sqrt{5}$
C $\sqrt{5}$
D $-\sqrt{5}$

$$\lim_{x \to 7} \frac{2x + 2}{x - 6} = \frac{\sqrt{2(7) + 2} - \sqrt{5}}{7 - 6}$$

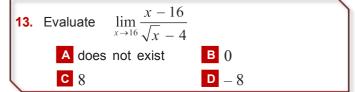
$$= \frac{\sqrt{16} - \sqrt{5}}{1}$$

$$= 4 - \sqrt{5}$$
B





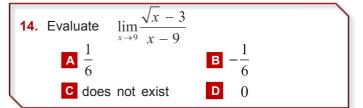
$$\frac{x + y}{x} = \lim_{x \to 0} \frac{x - 8x + 10}{x}$$
$$= \lim_{x \to 0} \frac{x^2 - 8x}{x}$$
$$= \lim_{x \to 0} \frac{x(x - 8)}{x}$$
$$= \lim_{x \to 0} x - 8$$
$$= 0 - 8$$
$$= -8$$



Use difference of squares to factor x - 16

$$\lim_{x \to 16} \frac{x - 16}{\sqrt{x} - 4} = \lim_{x \to 16} \frac{\left(\sqrt{x} - 4\right)\left(\sqrt{x} + 4\right)}{\left(\sqrt{x} - 4\right)}$$
$$= \lim_{x \to 16} \sqrt{x} + 4$$
$$= \sqrt{16} + 4$$
$$= 8$$

CHAPTER (18) LIMITS & Continuity



Use difference of squares to factor x - 9

$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9} = \lim_{x \to 9} \frac{\sqrt{x} - 3}{(\sqrt{x} - 3)(\sqrt{x} + 3)}$$
$$= \frac{1}{\sqrt{x} + 3}$$
$$= \frac{1}{\sqrt{9} + 3}$$
$$= \frac{1}{6}$$

Limits of Power Functions at Infinity

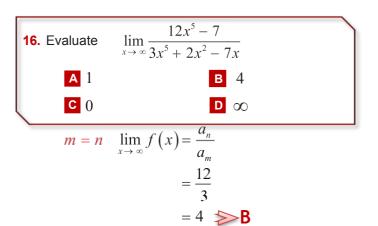
For any positive integer n

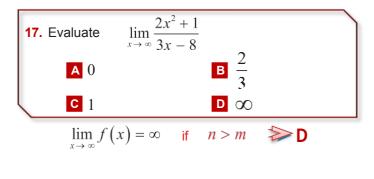
- $\lim_{x \to \infty} x^n = \infty$
- $\lim_{x \to \infty} ax^n = a \lim_{x \to \infty} x^n$
- $\lim_{x \to -\infty} x^n = \infty$, *n* is even
- $\lim_{x \to -\infty} x^n = -\infty$, *n* is odd
- $\lim_{x \to \pm \infty} \frac{1}{x} = 0$
- $\lim_{x \to \pm \infty} \frac{1}{x^n} = 0$
- For $f(x) = \frac{a(x)}{b(x)} = \frac{a_n x^n + \dots}{b_m x^m + \dots}$
 - $\lim_{x \to \infty} f(x) = 0$ if n < m
 - $\lim_{x \to \infty} f(x) = \frac{a_n}{a_m}$ if n = m
 - $\lim_{x \to \infty} f(x) = \infty \quad \text{if} \quad n > m$

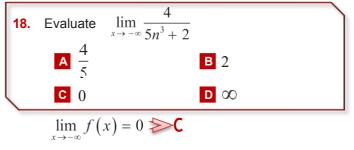
15. Evaluate
$$\lim_{x \to \infty} (x^3 + 2x^2 + 1)$$

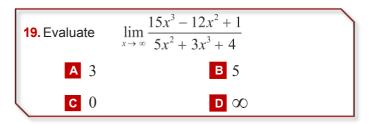
A 0 **B** ∞
C $-\infty$ **D** 1

$$\lim_{x \to \infty} x^n = \infty \implies \mathbf{B}$$









Rewrite the denominator in standard form

$$\lim_{x \to \infty} \frac{15x^3 - 12x^2 + 1}{3x^3 - 5x^2 + 4}$$

$$m = n \to \lim_{x \to \infty} f(x) = \frac{a_n}{b_m}$$

$$= \frac{15}{3}$$

$$= 5 \qquad \Longrightarrow \mathbf{B}$$

20. Let
$$\lim_{x \to \infty} \frac{Bx}{2 + |x|} = 3$$
, then find **B**
A $\frac{1}{3}$
B 3
C -3
D 0

Rewrite the denominator in standard form

$$|x| = x \text{ as } x \text{ approaches } +\infty$$
$$\lim_{x \to \infty} \frac{Bx}{2 + |x|} = \lim_{x \to \infty} \frac{Bx}{2 + x}$$
$$n = m \lim_{x \to \infty} f(x) = \frac{a_n}{b_m} = \frac{B}{1} = 3$$
$$\rightarrow B = 3 \implies B$$