CHAPTER (19) **DERIVATIVES**

 $\overline{1\Lambda}$

Tangent line is a line that just touches a curve at only one point

- The slope of a line tangent to the graph of a function is called the derivative of a function.
- The process of finding a derivative is called differetion and the result is called differential equation, and is

denoted by
$$
f'(x), y'
$$
 or $\frac{dy}{dx}$

Rules for Derivatives

$$
y = 4x^{\frac{5}{4}} + 8x^{\frac{1}{2}} + 4
$$

\n
$$
\frac{dy}{dx} = \frac{5}{4} \cdot 4x^{\frac{5}{4} - \frac{4}{4}} + \frac{1}{2} \cdot 8x^{\frac{1}{2} - \frac{2}{2}} + 0
$$

\n
$$
= 5x^{\frac{1}{4}} + 4x^{\frac{-1}{2}}
$$

\n
$$
= 5\sqrt[4]{x} + \frac{4}{\sqrt{x}}
$$

\n
$$
= 5\sqrt[4]{x} + \frac{4\sqrt{x}}{x}
$$

\n
$$
\implies
$$

19.3 Find an equation for the line tangent to the curve $y = 3x^4 + 2x^3 + 5x - 4$

 $4x^3 + 3x + 5$
B $12x^4 + 6x^3 + 5x - 4$ **C** $12x^3 + 6x^2 + 5$ **D** $12x^4 + 6x^3 + 5$

To find an equation for the line tangent we differentiate *y*

$$
y = 3x4 + 2x3 + 5x - 4
$$

y' = 12x³ + 6x² + 5

19.4 Find
$$
f'(x)
$$
 if $f(x) = \sqrt[3]{x^5}$
\n**A** $\frac{5}{9}x^{\frac{5}{9}}$ **B** $\frac{5}{9}x^{\frac{4}{9}}$
\n**C** $\frac{5}{9}\sqrt[9]{x^4}$ **D** $\frac{5}{9\sqrt[9]{x^4}}$

$$
f(x) = \sqrt[3]{x^3}
$$

$$
= x^{\frac{5}{9}}
$$

$$
f'(x) = \frac{5}{9} x^{\frac{5}{9} - \frac{9}{9}}
$$

= $\frac{5}{9} x^{\frac{-4}{9}}$
= $\frac{5}{9} \cdot \frac{1}{\sqrt[9]{x^4}} = \frac{3}{9\sqrt[9]{x^4}}$

19.5 Find the slope for the line tangent to the curve $f(x) = 10x^2 - 3x + 4$ at the point (1, 3) **A** 20 **B** 17 **C** 23 23 **D** 11 Step 1: Differentiate $f(x) = 10x^2 - 3x + 4$

B

 $f'(x) = 20x - 3$ Step 2: Find the slope at the point

$$
(1, 3) \rightarrow x = 1
$$

$$
f'(1) = 20(1) - 3
$$

= 17

B

Since the required derivative is the 7th which is greater than the degree of the polynomial, therefore $f^{(7)}(x) = 0$

B

Product and Quotient Rules for Derivatives

 $f = x^2 - 3$
 $g = 4x + 1$
 $g' = 4$ $f'(x) g(x) + f(x) g'(x)$ $2x(4x+1)+4(x^2-3)$ $8x^2 + 2x + 4x^2 - 12$ $12x^2 + 2x - 12$

B

$$
\frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^{2}}
$$

=
$$
\frac{0 (x + 6) - 1 \cdot 8}{(x + 6)^{2}}
$$

=
$$
\frac{-8}{(x + 6)^{2}}
$$

A

Velocity and Acceleration

Let the speed of an object given by the equation $s = f(t)$ then the velocity $v = f'(t)$ and acceleration is given by $a = f''(t)$

Example:

Find the maximum value of the function $f(x)$ in the interval $[0, 3]$ where

Step 1: Find the critical points

 $f(x) = \frac{x^3}{3} - 3x^2 + 8x - 4$ $f'(x) = x^2 - 6x + 8$ let $f(x) = 0$ $x^2 - 6x + 8 = 0$ $(x-4)(x-2)=0$ \rightarrow x = 4 or x = 2

Step 2: Compare *x* values to the interval

$$
x = 4 \notin [0, 3] \rightarrow \text{ rejected}
$$

$$
x = 2 \in [0, 3] \rightarrow \text{accepted}
$$

Step 3: Find the values of the endpoints and the critical points: $0, 2, 3$

$$
f(0) = \frac{0^3}{3} - 3(0)^2 + 8(0) - 4
$$

= -4

$$
f(2) = \frac{2^3}{3} - 3(2)^2 + 8(2) - 4
$$

= $\frac{8}{3}$

$$
f(3) = \frac{3^3}{2} - 3(3)^2 + 8(3) - 4
$$

= 6.5

The maximum value of the function $f(x)$ in the interval $[0, 3]$ ^{is 6.5}

Step 1: Find the critical point

$$
f(x) = 3x3 - 16x
$$

\n
$$
f'(x) = 9x2 - 16
$$

\nlet $f'(x) = 0$
\n
$$
9x2 - 16 = 0
$$

\n
$$
-4(3x + 4) = 0
$$

 $x = \pm \frac{4}{3}$ $\Rightarrow A$

Step 2: Compare *x* values to the interval

$$
x = \frac{4}{3} \notin [-5, 0]
$$
 rejected

$$
x = \frac{-4}{3} \in [-5, 0]
$$
 accepted

B

 $(3x)$