CHAPTER (19) **DERIVATIVES**

1.8

Tangent line is a line that just touches a curve at only one point

- The slope of a line tangent to the graph of a function is called the derivative of a function.
- The process of finding a derivative is called differentian and the result is called differential equation, and is

dy

denoted by
$$f'(x), y'$$
 or

Rules for Derivatives

Rule	f(x)	f'(x)	Example
Constant	f(x)=c	f'(x)=0	f(x)=5 $f'(x)=0$
Power	$f(x)=x^n$	$f'(x) = nx^{n-1}$	$f(x) = x^{4}$ $f'(x) = 4x^{3}$
Constant	$f(x)=cx^n$	$f'(x) = cnx^{n-1}$	$f(x)=2x^4$
Multiple			$f'(x) = 4 \cdot 2 x^3$ $= 8 x^3$
Sum or difference	$f(x) = g(x) \pm h(x)$	$f'(x) = g'(x) \pm h'(x)$	$f(x) = x^{3} + 5x^{2} - 4$ $f'(x) = 3x^{2} + 10x - 0$
<i>nth</i> derivative	$f(x)=x^n$	$f'(x) = nx^{n-1}$ $f''(x) = n(n-1)x^{n-2}$	$f(x) = x^{4}$ $f'(x) = 4x^{3}$ $f'''(x) = 12x^{2}$ f''''(x) = 24x $f^{(4)} = 24$

$$y = 4x^{\frac{5}{4}} + 8x^{\frac{1}{2}} + 4$$

$$\frac{dy}{dx} = \frac{5}{4} \cdot 4x^{\frac{5}{4} - \frac{4}{4}} + \frac{1}{2} \cdot 8x^{\frac{1}{2} - \frac{2}{2}} + 0$$

$$= 5x^{\frac{1}{4}} + 4x^{\frac{-1}{2}}$$

$$= 5\sqrt[4]{x} + \frac{4}{\sqrt{x}}$$

$$= 5\sqrt[4]{x} + \frac{4\sqrt{x}}{x}$$

$$B$$

19.3 Find an equation for the line tangent to the curve $y = 3x^4 + 2x^3 + 5x - 4$

 $4x^3 + 3x + 5$ **B** $12x^4 + 6x^3 + 5x - 4$ **C** $12x^3 + 6x^2 + 5$ **D** $12x^4 + 6x^3 + 5$

To find an equation for the line tangent we differentiate y

$$y = 3x^{4} + 2x^{3} + 5x - 4$$

$$y' = 12x^{3} + 6x^{2} + 5$$

19.4 Find
$$f'(x)$$
 if $f(x) = \sqrt[9]{x^5}$
A $\frac{5}{9} x^{\frac{5}{9}}$
B $\frac{5}{9} x^{\frac{4}{9}}$
C $\frac{5}{9} \sqrt[9]{x^4}$
D $\frac{5}{9\sqrt[9]{x^4}}$

$$f(x) = \sqrt[9]{x^5}$$
$$= x^{\frac{5}{9}}$$
$$f'(x) = \frac{5}{9}x^{\frac{5}{9} - \frac{9}{9}}$$

$$= \frac{5}{9}x^{\frac{-4}{9}}$$
$$= \frac{5}{9} \cdot \frac{1}{\sqrt[9]{x^4}} = \frac{5}{9\sqrt[9]{x^4}}$$

⇒D

Since the required derivative is the 7th which is greater than the degree of the polynomial, therefore $f^{(7)}(x) = 0$

```
⇒B
```

Product and Quotient Rules for Derivatives

 $f = x^{2} - 3$ g = 4x + 1 g' = 4 f'(x) g(x) + f(x) g'(x) $2x(4x + 1) + 4(x^{2} - 3)$ $8x^{2} + 2x + 4x^{2} - 12$ $12x^{2} + 2x - 12$

≫B

$$\frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2} = \frac{0 (x+6) - 1 \cdot 8}{(x+6)^2} = \frac{-8}{(x+6)^2}$$

≫A

Velocity and Acceleration

Let the speed of an object given by the equation s = f(t)then the velocity v = f'(t) and acceleration is given by a = f''(t)

Example:

Find the maximum value of the function f(x) in the interval [0, 3] where $f(x) = \frac{x^3}{3} - 3x^2 + 8x - 4$

Step 1: Find the critical points

 $f(x) = \frac{x^3}{3} - 3x^2 + 8x - 4$ $f'(x) = x^2 - 6x + 8$ let f(x) = 0 $x^2 - 6x + 8 = 0$ (x - 4)(x - 2) = 0 $\rightarrow x = 4 \text{ or } x = 2$

Step 2: Compare *x* values to the interval

$$x = 4 \notin [0, 3] \rightarrow \text{rejected}$$

$$x = 2 \in [0, 3] \rightarrow \text{accepted}$$

Step 3: Find the values of the endpoints and the critical points: 0, 2, 3

$$f(0) = \frac{0^3}{3} - 3(0)^2 + 8(0) - 4$$

= -4
$$f(2) = \frac{2^3}{3} - 3(2)^2 + 8(2) - 4$$

= $\frac{8}{3}$
$$f(3) = \frac{3^3}{2} - 3(3)^2 + 8(3) - 4$$

= 6.5

The maximum value of the function f(x) in the interval $[0, 3]^{is \ 6.5}$

Step 1: Find the critical point

$$f(x) = 3x^{3} - 16x$$

$$f'(x) = 9x^{2} - 16$$

let $f'(x) = 0$

$$9x^{2} - 16 = 0$$

$$-4)(3x + 4) = 0$$

 $x = \pm \frac{4}{3}$

Step 2: Compare x values to the interval

$$x = \frac{4}{3} \notin [-5, 0]$$
 rejected
$$x = \frac{-4}{3} \in [-5, 0]$$
 accepted

≫B

(3x)