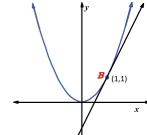


Tangent line is a line that just touches a curve at only one point



- The slope of a line tangent to the graph of a function is called the derivative of a function.
- The process of finding a derivative is called differetion and the result is called differential equation, and is $f'(x), y' \text{ or } \frac{dy}{dx}$ denoted by

Rules for Derivatives

Rule	f(x)	f'(x)	Example
Constant	f(x)=c	f'(x)=0	f(x)=5 $f'(x)=0$
Power	$f(x)=x^n$	$f'(x) = nx^{n-1}$	$f(x) = x^4$ $f'(x) = 4x^3$
Constant	$f(x)=cx^n$	$f'(x) = cnx^{n-1}$	$f(x)=2x^4$
Multiple			$f'(x) = 4 \cdot 2x^3$ $= 8x^3$
Sum or difference	$f(x) = g(x) \pm h(x)$	$f'(x) = g'(x) \pm h'(x)$	$f(x)=x^3 + 5x^2 - 4$ $f'(x)=3x^2 + 10x - 0$
<i>nth</i> derivative	$f(x)=x^n$	$f'(x) = nx^{n-1}$ $f''(x) = n(n-1)x^{n-2}$	$f(x)=x^{4}$ $f'(x)=4x^{3}$ $f''(x)=12x^{2}$ $f'''(x)=24x$ $f^{(4)}=24$

- **1.** Find if f'(x)f(x) = x + 1
 - **A** 0
- **B** 1
- **C** 2
- **D** -1

$$f(x) = x + 1$$

$$f'(x) = 1 + 0$$

=1

- **2.** Find $\frac{dy}{dx}$ if $y = 4x^{\frac{5}{4}} + 8x^{\frac{1}{2}} + 4$

 - **A** $5x^{\frac{1}{4}} + 4x^{\frac{1}{2}}$ **B** $5\sqrt[4]{x} + \frac{4\sqrt{x}}{x}$
 - **C** $5\sqrt[4]{x} + \frac{4}{x}$

$$y = 4x^{\frac{5}{4}} + 8x^{\frac{1}{2}} + 4$$

$$\frac{dy}{dx} = \frac{5}{4} \cdot 4x^{\frac{5}{4} - \frac{4}{4}} + \frac{1}{2} \cdot 8x^{\frac{1}{2} - \frac{2}{2}} + 0$$

$$= 5x^{\frac{1}{4}} + 4x^{\frac{-1}{2}}$$

$$= 5\sqrt[4]{x} + \frac{4}{\sqrt{x}}$$

$$= 5\sqrt[4]{x} + \frac{4\sqrt{x}}{x}$$

3. Find an equation for the line tangent to the **curve** $y = 3x^4 + 2x^3 + 5x - 4$

 $4x^3 + 3x + 5$

- B $12x^4 + 6x^3 + 5x 4$
- C $12x^3 + 6x^2 + 5$ D $12x^4 + 6x^3 + 5$

To find an equation for the line tangent we differentiate *y*

$$y = 3x^4 + 2x^3 + 5x - 4$$

$$y' = 12x^3 + 6x^2 + 5$$

- Find f'(x) if $f(x) = \sqrt[9]{x^5}$
 - $\frac{5}{9} x^{\frac{5}{9}}$
- $\frac{5}{9} \sqrt[9]{x^4}$

$$f(x) = \sqrt[9]{x^5}$$

$$= x^{\frac{5}{9}}$$

$$f'(x) = \frac{5}{9}x^{\frac{5}{9} - \frac{9}{9}}$$

$$= \frac{5}{9}x^{-\frac{4}{9}}$$

$$= \frac{5}{9} \cdot \frac{1}{\sqrt[9]{x^4}} = \frac{5}{9\sqrt[9]{x^4}}$$

5. Find the slope for the line tangent to the curve

 $f(x) = 10x^2 - 3x + 4$ at the point (1, 3)

- **A** 20
- **B** 17
- **C** 23
- **D** 11

Step 1: Differentiate

$$f\left(x\right) = 10x^2 - 3x + 4$$

$$f'(x) = 20x - 3$$

Step 2: Find the slope at the point

$$(1,3) \rightarrow x=1$$

$$f'(1) = 20(1) - 3$$

= 17

- Find the second derivative of the **function** $f(x) = 3x^4 - 2x^3 + x + 4$
 - **A** $12x^3 6x^2 + 1$ **B** $36x^2 12x$
 - C $12x^3 6x^2$
- D $36x^2 12x + 1$

$$f(x) = 3x^4 - 2x^3 + x + 4$$

$$f'(x) = 12x^3 - 6x^2 + 1$$

$$f''(x) = 36x^2 - 12x$$

- ≫B
- Find the seventh derivative of

$$f(x) = 3x^6 + 4x^5 + 2x^3 + \frac{1}{2}x^2 - 7x + 1$$

- **A** 18
- **C** 1

Since the required derivative is the 7th which is greater than the degree of the polynomial, therefore

$$f^{(7)}(x) = 0$$

Product and Quotient Rules for Derivatives

Rule	h(x)	h'(x)	Example
Product	h(x) = f(x) g(x)	f'(x) g(x) + f(x) g'(x) (first)'(second)+(first) (second)	$h(x) = (x^3 + 4)(2x^2)$ $f = x^3 + 4$ $g = 2x^2$ $g' = 4x$ $3x^2(2x^2) + 4x(x^3 + 4)$
Quotient	$h(x) = \frac{f(x)}{g(x)}$	$\frac{f'(x) g(x) - f(x) g'(x)}{\left[g(x)\right]^2}$ $\frac{(n)'(d) - (n)(d)'}{d^2}$ $n = \text{numirator}$ $d = \text{derominater}$	$h(x) \frac{x^3 + 4}{2x^2}$ $f = x^3 + 4$ $g = 2x^2$ $3x^2 (2x^2) - 4x(x^3 + 4)$ $(2x^2)^2$

- **Find** $f(x) = 3x^2 kx + 5$ **if** f'(1) = 2
 - **A** 3
- **B** 4
- **C** -8
- D 4

$$f(x) = 3x^2 - kx + 5$$

$$f'(x) = 6x - k$$

$$f'(1) = 6(1) - k$$

$$2 = 6 - k$$

$$k = 4$$

≫B

- Find f'(x) if $f(x) = (x^2 3)(4x + 1)$
 - **A** $12x^2 + 2x$
- **B** $12x^2 + 2x 12$
- **C** $2x^2 2$
- D $x^2 + 2x + 1$

$$f(x) = (x^2 - 3)(4x + 1)$$

$$f = x^2 - 3$$

$$g = 4x + 1$$

$$f' = 2x$$

$$g' = 4$$

$$g = 4x + 1$$

$$g' = 4$$

$$f'(x) g(x) + f(x) g'(x)$$

$$2x(4x+1)+4(x^2-3)$$

$$8x^2 + 2x + 4x^2 - 12$$

$$12x^2 + 2x - 12$$

- **10. Find** f'(x) **if** $f(x) = \frac{8}{x+6}$

$$\frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2} = \frac{0 (x+6) - 1 \cdot 8}{(x+6)^2} - 8$$

Velocity and Acceleration

Let the speed of an object given by the equation then f(t)the velocity v = an(t) acceleration is given by

$$a = f''(t)$$

- **11.** If the speed of an object at any time is given by $s(t) = 16t - 5t^2 + 4$, then find the equation of its instantaneous velocity.
 - A 16 10t
- **B** 16t 5
- **C** 16 5t
- **D** 16 t

$$s(t) = 16t - 5t^2 + 4$$

 $v = s'(t) = 16 - 10t$

12. If the displacement of an object at any time is given by $s(t) = 24t + t^2$,

find the instantaneous velocity

at t=3

- **A** 81
- **B** 26
- **C** 30
- **D** 6

$$s(t) = 24t + t^{2}$$

$$v = s'(t) = 24 + 2t$$

$$s'(3) = 24 + 2(3)$$

$$= 30$$

- 13. Find the acceleration of an object if its speed at any time is given by $s(t) = 2x^3 + 4 + x^2$
 - **A** $6x^2 + 2x$
- **B** $6x^2 + 2x + 4$
- C $12x^2 + 2x$ D 12x + 2

$$s(t) = 2x^3 + x^2 + 4$$

$$v \to s'(t) = 6x^2 + 2x$$

$$a \to s''(t) = 12x + 2$$

- **14.** If $\frac{d}{dx}\sin x = \cos x$ and $\frac{d}{dx}\cos x = -\sin x$ then find $\frac{d}{dx}(\sin x \cos x)$

 - C $\cos^2 x + \sin^2 + x$ D $\cos 2x$

$$f(x) = \sin x$$
 and $g(x) = \cos x$

$$\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$$

$$f = \sin x \qquad \qquad f' = \cos x$$

$$g = \cos x$$
 $g' = -\sin x$

$$\cos x \cos x + (-\sin x)(\sin x)$$

$$\cos^2 x - \sin^2 x$$

15. Find the acceleration of an object after 2 seconds if its displacement at any time is

$$s(t) = x^2 \left(x^3 + 1 \right)$$

- A 158
- **B** 36
- **C** 84
- D 162

$$s(t) = x^2(x^3 + 1) = x^5 + x^2$$

$$v \to s'(t) = 5x^4 + 2x$$

$$a \to s''(t) = 20x^3 + 2$$

$$s''(2) = 20(2)^3 + 2$$
$$= 160 + 2$$

$$= 162$$

≫D

Extreme Values of Functions

- Extreme values are any maximum or minimum values on a given interval and where these values are located.
- Critical point is a point in the interior of the domain of a function f at which f' = 0 or f' does not exist.
- The extreme values found at the end points and at critical points.
 - **16.** The critical point of the function $f(x) = 4x 3x^2 + 5$ is at $x = \dots$
- $\frac{2}{3}$

$$f(x) = 4x - 3x^2 + 5$$

$$f'(x) = 4 - 6x$$

To find the critical point let f'(x) = 0

$$4 - 6x = 0$$

$$6x = 4$$

$$x = \frac{4}{6}$$

$$x = \frac{2}{3}$$

Example:

Find the maximum value of the function f(x) in the interval [0, 3] where $f(x) = \frac{x^3}{3} - 3x^2 + 8x - 4$

Step 1: Find the critical points

$$f(x) = \frac{x^3}{3} - 3x^2 + 8x - 4$$

$$f'(x) = x^2 - 6x + 8$$
let $f(x) = 0$

$$x^2 - 6x + 8 = 0$$

$$(x - 4)(x - 2) = 0$$

$$\Rightarrow x = 4 \text{ or } x = 2$$

Step 2: Compare x values to the interval

$$x = 4 \notin [0, 3] \rightarrow \text{rejected}$$

$$x = 2 \in [0, 3] \rightarrow \text{accepted}$$

Step 3: Find the values of the endpoints and the critical points: 0, 2, 3

$$f(0) = \frac{0^3}{3} - 3(0)^2 + 8(0) - 4$$

$$= -4$$

$$f(2) = \frac{2^3}{3} - 3(2)^2 + 8(2) - 4$$

$$= \frac{8}{3}$$

$$f(3) = \frac{3^3}{2} - 3(3)^2 + 8(3) - 4$$

$$= 6.5$$

The maximum value of the function f(x) in the interval $\begin{bmatrix} 0,3 \end{bmatrix}$ is 6.5

17. The maximum value of the function

 $f(x) = 3x^3 - 16x$ in the internal [-5, 0] is at

A
$$x = \pm \frac{4}{3}$$

B
$$x = \frac{-4}{3}$$

$$x = \frac{4}{3}$$

$$x = -\frac{3}{4}$$

Step 1: Find the critical point

$$f(x) = 3x^{3} - 16x$$

$$f'(x) = 9x^{2} - 16$$

$$\det f'(x) = 0$$

$$9x^{2} - 16 = 0$$

$$(3x - 4)(3x + 4) = 0$$

$$x = \pm \frac{4}{3}$$

Step 2: Compare x values to the interval

$$x = \frac{4}{3} \notin [-5, 0]$$
 rejected
 $x = \frac{-4}{3} \in [-5, 0]$ accepted

