CHAPTER (16) **VECTORS**

- Physical quantities (or scalar quantities) speed, mass, time can be completely described by a single number called scalar. This number indicates the magnitude or size of the quantity.
- Vector is a quantity that has both magnitude and direction. The velocity of a car is a vector that describes both the speed and direction of the car.

Example:

Determine the vector quantity from the following quantities:

A Time

B Distance

C Force

D Mass

E Speed F Displacer

i Pressure J Velocity

F Displacement G Energy
J Velocity K Area

H Gravity
L Temperature

M Momentum

Scalar Quantities magnitude only	Vector Quantities magnitude and direction
Time Distance Mass Speed Energy Area Temperature	Force Displacement Gravity Pressure Velocity Momentum

 Consider the directed line segment with an initial point A (also known as the tail) and terminal point B (also known as head) shown.

This vector is denoted by $\overrightarrow{AB} \ \vec{a}$ or a

• The direction of a vector is the directed angle between the vector and the positive *x*-axis.

• The direction of a vector can also be given as bearing

A quadrant bearing angle is a directional measurement between 0° and 90° east or west of the north-south line

v is 40° east of south (or south-east) written as $S40^{\circ}E$ **A true bearing:** is a directional measurement where the angle is measured clockwise from North.

True bearings are always given using three digits $_{25^{\circ}}$ written as $_{025^{\circ}}$

The angle is in quadrant I, so the angle is from north to east $\rightarrow N25^{\circ}E \rightarrow \square$

- 4. Find the true bearing of the vector v if its angle in the standard position is 180°
 - A 090°
- **B** 180°
- **C** 270°
- D 360°

The true bearing is measured clockwise from north graph the vector in the standard position 180°

- 5. Find the quadrant bearing of a vector if the true bearing is 145°
 - A S35°E
- в _{N145°S}
- C E55°S
- D S55°E

The true bearing is 145° from north, so the angle to the south axis is $180-145=35^{\circ}$

Since the angle is in quadrant IV, therefore the quadrant bearing is from south to east $S35^{\circ}E$

Vector Types

In your operations with vectors, you will need to be familiar with following vector types.

- Parallel vectors have the same or opposite direction but not necessarily the same magnitude $a \parallel b \parallel c \parallel e \parallel f$
- Equivalent vectors have the same magnitude and direction a = c
 - $a \neq b$ why?
 - $a \neq d$ why?

- Opposite vectors have the same magnitude but opposite direction a = -e
- Resultant vector, when two or more vectors are added, then sum is a single vector called the resultant.

Finding Resultants		
Triangle Method Head to Tail	Parallelogram Method Tail to Tail	
a+b	<i>b</i>	
a b	a + b	

Two or more vectors with a sum that is a vector r are called components for r. While components can have any direction, it is often useful to express or resolve a vector into two perpendicular components. The rectangular components are horizontal (x) and vertical (y).

$$|x| = N\cos\theta$$

$$|y| = N\sin\theta$$

The two vectors are parallel, opposite in direction but doesn't equivalent \rightarrow parallel

In the triangle method head to tail is used $b \to a$,

then the resultant is c

8. Yasmine is pushing the handle of a lawn mower with a force of 400 newtons at an angle of with the ground . Find the magnitude of the horizontal

- A 200
- **B** 400
- **C** $200\sqrt{3}$
- **D** $400\sqrt{3}$

Horizontal component
$$= |x| = N \cos \theta$$

= $400 \cos 60$
= $400 \times \frac{1}{2}$

9. For a field goal attempt, a football is kicked with velocity show in the diagram below. Find the magnitude of the vertical component.

- A $90\sqrt{3}$
- **B** 90
- **C** 45
- D $45\sqrt{3}$

Vertical component $|v| = N \sin \theta$ $= 90 \sin 30$ $=90\times\frac{1}{2}$

Vectors in the Coordinate Plane

Components form a vector \overline{AB} with initial point $A(x_1, y_1)$ and terminal point $B(x_2,y_2)$ is given by $\langle x_2-x_1,\,y_2-y_1\rangle$

Magnitude of a vector in the coordinate plane is

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- If v has a component from $\langle a, b \rangle$ then $|v| = \sqrt{a^2 + b^2}$
- 10. Find the magnitude of with IB itial point

and terminal point B(4, 5)

- A 25
- c $\sqrt{3}$
- **D** 10

$$|\overrightarrow{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$= \sqrt{(7 - 4)^2 + (9 - 5)^2}$$

$$= \sqrt{3^2 + 4^2}$$

$$= \sqrt{25}$$

$$= 5$$

- 11. Find the component form of Awith initial point A(-4,2) and terminal point B(3,-5)
 - A $\langle 7, -7 \rangle$ B $\langle -7, 7 \rangle$ C $\langle 6, -8 \rangle$ D $\langle -8, 6 \rangle$

$$\overline{AB} = \langle x_2 - x_1, y_2 - y_1 \rangle$$
$$= \langle 3 - (-4), -5 - 2 \rangle$$
$$= \langle 7, -7 \rangle$$

- 12. Which vector has magnitude equal 9
 - A $\langle 3\sqrt{3}, 3 \rangle$ C $\langle \sqrt{5}, 4 \rangle$

$$|v| = \sqrt{a^2 + b^2}$$

$$|v| = \sqrt{(3\sqrt{3})^2 + (3\sqrt{6})^2}$$

$$= \sqrt{9 \cdot 3 + 9 \cdot 6}$$

$$= \sqrt{27 + 54}$$

$$= \sqrt{81}$$

$$= 9$$

Vector Operations

if $a = \langle a_1, a_2 \rangle$ and $b = \langle b_1, b_2 \rangle$

	Example K=6 a=<2.4> b= <3.7>
Addition $a+b$ Subtraction $a-b$ Scalar multipliction ka	$\langle 2+3, 4+7 \rangle = \langle 5, 11 \rangle$ $\langle 2-3, 4-7 \rangle = \langle -1, -3 \rangle$ $6a = \langle 6\cdot 2, 6\cdot 4 \rangle$ $= \langle 12, 24 \rangle$

16.13 If
$$-3v = \langle 12, -15 \rangle$$
, then find v

- $A \langle 4, -5 \rangle$
- $B \langle -36, 45 \rangle$
- $\left\langle -4,5\right\rangle$

$$-3v = \langle 12, -15 \rangle$$

$$\frac{-3}{-3}v = \left\langle \frac{12}{-3}, \frac{-15}{-3} \right\rangle$$

≫C

14. If $A = \langle 1, 3 \rangle$, $B = \langle 2, 4 \rangle$ then find 2B - A

- $A \langle 5, 3 \rangle$
- B $\langle 3, 5 \rangle$
- $\langle -2, -2 \rangle$
- \triangleright $\langle 2, 2 \rangle$

$$2B - A$$

$$2\langle 2, 4\rangle - \langle 1, 3\rangle$$

$$\langle 4, 8 \rangle - \langle 1, 3 \rangle = \langle 3, 5 \rangle$$

Unit Vectors

- A vector that has a magnitude of 1 unit is called unit vector $v = \frac{v}{1-1}$
- The unit vectors in the direction of the positive x-axis and y-axis are denoted by $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$ respectively. Vectors i and j are called standard unit vectors.

- The vector sum ai + bj is called linear combination.
- The vector v can be written in component form or as a linear combination of i and j using the magnitude and direction angle of the vector.

- $v = \langle a, b \rangle$ $= \langle |v| \cos \theta, |v| \sin \theta \rangle$ $= |v| (\cos \theta) i + |v| (\sin \theta) j$
- It also follows that the direction angle θ of vector $v = \langle a, cb \rangle$ an be found by solving trigonometric equation

$$\tan\theta = \frac{|v|\sin\theta}{|v|\cos\theta} \text{ or } \tan\theta = \frac{b}{a}$$

• On the other hand for a given $v = \langle a, b \rangle$, then θ is given by

$\theta = \tan^{-1} \frac{b}{a}$	a is positive
$\theta = \tan^{-1}\frac{b}{a} + \pi$	a is negative

15. Find a unit vector u with the same direction as

$$v = \langle 5, 12 \rangle$$

- $\left\langle \frac{12}{13}, \frac{5}{13} \right\rangle$
- $\left\langle \frac{5}{13}, \frac{12}{13} \right\rangle$
- $\left\langle \frac{13}{5}, \frac{13}{12} \right\rangle$

$$|v| = \sqrt{5^2 + 12^2}$$
$$= \sqrt{169}$$
$$= 13$$

$$u = \frac{v}{|v|}$$

$$= \frac{\langle 5, 12 \rangle}{13}$$

$$= \left\langle \frac{5}{13}, \frac{12}{13} \right\rangle$$

16. Write the component form of the vector

$$v = \langle 3i - 5j \rangle$$

- \land $\langle -3, 5 \rangle$
- $B \langle 3, -5 \rangle$
- \mathbf{c} $\langle 3, 5 \rangle$
- D $\langle 5, -3 \rangle$

$$v = ai + bj \rightarrow v = \langle a, b \rangle$$

 $3i - 5j \rightarrow \langle 3, -5 \rangle$

≫B

\overline{DE} be the vector with initial point D(-2, 3)and terminal point E(4, 5). Write \overline{DE} as a linear combination of the vectors i and j

- A 2i + 6i
- B 2i + 3i
- **C** 4i + 5j
- D 6i + 2j

$$\overline{DE} = \langle x_2 - x_1, y_2 - y_1 \rangle$$

$$= \langle 4 - (-2), 5 - 3 \rangle$$

$$= \langle 6, 2 \rangle$$

$$= 6i + 2j$$

≫D

18. Find the component form of the vector v with magnitude 10 and $\theta = 120^{\circ}$

By graphing the vector, we find that x or a is negative and y or b is positive therefore only option has negative x and positive y.

By solving

$$v = \langle |v|\cos\theta, |v|\sin\theta \rangle$$

$$= \langle 10\cos 120, 10\sin 120 \rangle$$

$$= \langle 10\left(\frac{-1}{2}\right), 10\frac{\sqrt{3}}{2} \rangle$$

$$= \langle -5, 5\sqrt{3} \rangle$$

19. Write the vector $v = \langle 5, 8 \rangle$ as a linear combination of the vectors i and j

- A 5j + 8i
- **B** 5j 8i
- **c** 5i + 8j
- **D** 5i 8j

$$v = \langle a, b \rangle \rightarrow ai + bi$$

 $v = \langle 5, 8 \rangle \rightarrow 5i + 8j$

Dot Product

Dot product of $a = \langle a_1, a_2 \rangle$ and $b = \langle b_1, b_2 \rangle$ is defined as $a \cdot b = a_1 b_1 + a_2 b_2$

Orthogonal Vectors (Perpendicular)

The vectors a and b are orthogonal if and only if $a \cdot b = 0$

Angle between two Vectors

If θ is the angle between nonzero vectors \mathbf{a} and \mathbf{b} , then $\cos \theta = \frac{a \cdot b}{|a| |b|}$

20. Find the dot product of u and v, if

$$u = \langle 2, 5 \rangle \ v = \langle 8, 4 \rangle$$

- **C** 32
- D 36

$$a \cdot b = a_1 b_1 + a_2 b_2$$

 $u \cdot v = 2 \times 8 + 5 \times 4$
 $= 16 + 20$
 $= 36$

21. Determine the perpendicular vectors

$$t = \langle 3, 6 \rangle, u = \langle -2, 7 \rangle, v = \langle -4, 2 \rangle, w = \langle 4, 6 \rangle$$

- **c** *w*⋅*v*
- $\mathbf{D} \mathbf{w} \cdot t$

Vectors are perpendicular if and only if $a \cdot b = 0$

$$t \cdot v = 3(-4) + 6(2)$$

= -12 + 12
= 0

22. Find the angle θ between the vectors

$$u = \langle -2, 0 \rangle$$
 and $v \langle -3, -3 \rangle$

- A 45°
- **B** 60°
- **c** 30°
- D 120°

$$u \cdot v = (-2)(-3) + (0)(-3)$$

= 6 + 0
= 6

$$|u||v| = \sqrt{(-2)^2 + 0^2} \times \sqrt{(-3)^2 + (-3)^2}$$

$$= \sqrt{4} \times \sqrt{18} = \sqrt{72}$$

$$= 6\sqrt{2}$$

$$\cos \theta = \frac{u \cdot v}{|u||v|} = \frac{6}{6\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \rightarrow \theta = 45^\circ$$

Unit Vectors

In the three-dimensional coordinate system, a third axis called *z*-axis that passes through the origin and is perpendicular to both the *x*-axis and *y*-axis

Distance and Midpoint Formula in Space

• The distance between points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

• The midpoint M of \overline{AB} is given by

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

23. Find the length of the segment between the endpoints A(-4, 10, 4), B(1, 0, 9)

- A $6\sqrt{5}$
- **B** $5\sqrt{6}$
- **C** 10
- **D** 5

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$= \sqrt{(1 - (-4))^2 + (0 - 10)^2 + (9 - 4)^2}$$

$$= \sqrt{5^2 + (-10)^2 + 5^2}$$

$$= \sqrt{25 + 100 + 25}$$

$$= \sqrt{150}$$

$$= \sqrt{6 \cdot 25}$$

$$= 5\sqrt{6}$$

≫B

24. If (3, 4, 4) is the midpoint of *AB*, A(-3, 2, 8) and B(9, 6, k), then find the value of k

- **A** 4
- **B** 6
- **c** 2
- **D** 0

$$\frac{z_1 + z_2}{2} = M$$
$$\frac{8 + k}{2} = 4$$
$$8 + k = 8$$
$$k = 0$$

25. Classify the triangle ABC with vertices

A(3, 6, 1), B(5, 7, 4) and C(1, 5, -2)

- A Right
- B Isosceles
- **c** Equilateral
- Neither

$$AB = \sqrt{(5-3)^2 + (7-6)^2 + (4-1)^2} = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$$

$$AC = \sqrt{(3-1)^2 + (6-5)^2 (1-(-2))^2} = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$$

$$BC = \sqrt{(5-1)^2 + (7-5)^2 + (4-(-2))^2} = \sqrt{4^2 + 2^2 + 6^2} = \sqrt{56}$$

$$AB = AC \text{ then it is an isosceles triangle}$$

Express Vectors in Space

To find the component form of the directed line segment from $A(x_1, y_1, z_1)$ to $B(x_2, y_2, z_2)$ is

$$\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

The unit vectors are: $i = \langle 1, 0, 0 \rangle, j = \langle 0, 1, 0 \rangle, k = \langle 0, 0, 1 \rangle$

The linear combination of $v = \langle v_1, v_2, v_3 \rangle$ is $v = v_1 i + v_2 j + v_3 k$

The magnitude of the vector $v = \langle v_1, v_2, v_3 \rangle$

$$|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

The unit vector \boldsymbol{u} in the direction of \boldsymbol{v} is $u = \frac{\boldsymbol{v}}{\boldsymbol{v}}$

26. Find the component form of if \overrightarrow{AB}

$$A(-4, -2, 1)$$
 and $B(3, 6, -6)$

A
$$\langle -7, -8, 7 \rangle$$
 B $\langle 7, 8, -7 \rangle$

B
$$\langle 7, 8, -7 \rangle$$

$$(-7, 8, -7)$$
 $(7, 8, 7)$

$$\overrightarrow{AB} = \langle 3 - (-4), 6 - (-2), -6 - 1 \rangle$$

= $\langle 7, 8, -7 \rangle$

27. The magnitude of the vector v = 7i + 8j - 7k is

A
$$\sqrt{22}$$

D
$$9\sqrt{2}$$

$$|v| = \sqrt{7^2 + 8^2 + (-7)^2}$$

$$= \sqrt{49 + 64 + 49}$$

$$= \sqrt{162}$$

$$= \sqrt{2 \cdot 81}$$

$$= 9\sqrt{2}$$

28. Find the unit vector in the direction of the **vector** $v = \langle 3, 2, \sqrt{3} \rangle$

$$|v| = \sqrt{3^3 + 2^2 + (\sqrt{3})^2}$$

$$= \sqrt{9 + 4 + 3}$$

$$= \sqrt{16}$$

$$= 4$$

$$u = \frac{v}{|v|} = \frac{3, 2, \sqrt{3}}{4}$$
$$= \left\langle \frac{3}{4}, \frac{1}{2}, \frac{\sqrt{3}}{4} \right\rangle$$

Vector Operations in Space

If
$$a = \langle a_1, a_2, a_3 \rangle, b = \langle b_1, b_2, b_3 \rangle$$

Vector operation	Result	Example K = 5 a = <2.1.0> b= <-1.2.7>
Addition $a+b$	$\langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$	$\langle 2 + (-1), 1 + 2, 0 + 7 \rangle$ $\langle 1, 3, 7 \rangle$
Subtraction $a-b$	$\langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$	$\langle 2 - (-1), 1 - 2, 0 - 7 \rangle$ $\langle 3, -1, -7 \rangle$
Scalar multiplication <i>ka</i>	$\langle k a_1, k a_2, k a_3 \rangle$	$\langle 5(2), 5(1), 5(0) \rangle$ $\langle 10, 5, 0 \rangle$

Dot Products of Vectors in Space

The dot product of $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$ is defined as $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$

The vectors a and b are perpendicular if and only if $a \cdot b = 0$

29. Let $y = \langle -1, 4, -4 \rangle$ and $z = \langle -2, 0, 5 \rangle$, then find 4v + 2z

A
$$6\langle -3, 4, 1 \rangle$$

B
$$8\langle 1, -4, 9 \rangle$$

$$(-8, 16, -6)$$

$$\triangleright$$
 $\langle 8, -16, 6 \rangle$

$$4y + 2z = 4\langle -1, 4, -4 \rangle + 2\langle -2, 0, 5 \rangle$$

= $\langle -4, 16, -16 \rangle + \langle -4, 0, 10 \rangle$
= $\langle -8, 16, -6 \rangle$

30. Let $y = \langle 3, -6, 2 \rangle$ $w = \langle -1, 4, -4 \rangle$ $z = \langle -2, 0, 5 \rangle$ then find 2w - z + 3y

$$A \langle -7, -10, 9 \rangle$$

A
$$\langle -7, -10, 9 \rangle$$
 B $\langle 9, -10, -7 \rangle$

c
$$\langle 7, 10, 9 \rangle$$

D
$$\langle 9, 10, 7 \rangle$$

$$2w - z + 3y = 2\langle -1, 4, -4 \rangle - \langle -2, 0, 5 \rangle + 3\langle 3, -6, 2 \rangle$$
$$= \langle -2, 8, -8 \rangle - \langle -2, 0, 5 \rangle + \langle 9, -18, 6 \rangle$$
$$= \langle 9, -10, -7 \rangle$$

31. Find the dot product of u and v if

$$u = \langle -7, 3, -3 \rangle, v = \langle 5, 17, 5 \rangle$$

- **B** 31
- **C** -1
- **D** 1

$$u \cdot v = -7(5) + 3(17) + (-3)(5)$$

= -35 + 51 - 15

32. If the vectors u and v are orthogonal then find k

$$u = \langle 3, -3, 3 \rangle, v = \langle 4, k, 3 \rangle$$

- D-8

For perpendicular vectors $a \cdot b = 0$

$$u \cdot v = 3 \cdot 4 + (-3) \cdot k + 3 \cdot 3 = 0$$
$$= 12 - 3k + 9 = 0$$
$$= -3k = -21$$
$$k = 7$$

33. Find the angle ϕ etween u and v

$$u = \langle \sqrt{2}, 2, 0 \rangle, \ v = \langle \sqrt{3}, 0, 1 \rangle$$

- A 120°
- B 30°
- **C** 45°
- D 60°

$$\cos \theta = \frac{u \cdot v}{|u| |v|}$$

$$u \cdot v = \sqrt{2} \times \sqrt{3} + (2 \times 0) + (0 \times 1)$$

$$= \sqrt{6} + 0 + 0 = \sqrt{6}$$

$$|u| = \sqrt{(\sqrt{2})^2 + 2^2 + 0^2}$$

$$= \sqrt{2 + 4 + 0}$$

$$= \sqrt{6}$$

$$|v| = \sqrt{(\sqrt{3})^2 + 0^2 + 1^2}$$

$$= \sqrt{3 + 0 + 1}$$

$$= 2$$

$$\cos \theta = \frac{\sqrt{6}}{2 \cdot \sqrt{6}} = \frac{1}{2}$$
$$\cos^{-1} \frac{1}{2} \theta = 60^{\circ}$$

Cross Product of Vectors in Space

If $a = ai + a_2 j + a_3 k$ and $b = b_1 k + b_2 j + b_3 k$, the cross product of a and b is the vector

$$a \times b = (a_2 b_3 - a_3 b_2)i - (a_1 b_3 - a_3 b_1)j + (a_1 b_2 - a_2 b_1)k$$

To find the product we can apply the formula for calculating the determinant of a 3×3 matrix.

$$a \times b = \begin{pmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} a_2 & a_3 \\ b_2 & b_3 \end{pmatrix} i - \begin{pmatrix} a_1 & a_3 \\ b_1 & b_3 \end{pmatrix} j + \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \mathbf{k}$$

If $a \times b = c$ the c is perpendicular to a and bIf a and b are adjacent sides in a parallelogram, then $|a \times b|$ equals the area of that parallelogram.

Example:

Find the area of the parallelogram if a = -4i + j + 8k and b=3i-4j-3k are two adjacent sides of the parallelogram.

Solution:

Step 1:

$$b = \begin{pmatrix} i & j & k \\ -4 & 1 & 8 \\ 3 & -4 & -3 \end{pmatrix}$$
$$= \begin{bmatrix} -3 - (-32) \end{bmatrix} i - \begin{bmatrix} 12 - 24 \end{bmatrix} j + \begin{bmatrix} 16 - 3 \end{bmatrix} k$$
$$= 29i + 12j + 13k$$

Step 2:

Area =
$$|a \times b|$$
 = $\sqrt{(29)^2 + 12^2 + 13^2}$
= $\sqrt{841 + 144 + 169}$
= $\sqrt{1154}$

34. Find

$$\begin{pmatrix} i & j & k \\ 3 & -2 & 1 \\ -3 & 3 & 1 \end{pmatrix}$$

- -5i+6j+3k
- -5i-6j+3k
- -i+6j+14k
- D i 6j + 14k

This question is the same as:

Find the cross product of

$$u = \langle 3, -2, 1 \rangle \text{ and } v = \langle -3, 3, 1 \rangle$$

$$u \times v = \begin{pmatrix} i & j & k \\ 3 & -2 & 1 \\ -3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3 & 1 \end{pmatrix} i - \begin{pmatrix} 3 & 1 \\ -3 & 1 \end{pmatrix} j + 3 \begin{pmatrix} 3 & -2 \\ -3 & 3 \end{pmatrix} k$$

$$= (-2 - 3)i - \begin{bmatrix} 3 - (-3) \end{bmatrix} j + (9 - 6)k$$

$$= -5i - 6j + 3k$$

35. Determine the perpendicular vector to both vectors u=-2i-j-3k and v=5i+j+4k

A
$$\langle -1, -7, -3 \rangle$$
 B $\langle 1, 7, 3 \rangle$

$$\langle -1, -7, 3 \rangle$$

Perpendicular vector is $u \times v$

$$u \times v = \begin{pmatrix} i & j & k \\ -2 & -1 & -3 \\ 5 & 1 & 4 \end{pmatrix}$$
$$= (-4 - (-3))i - (-8 - (-15))j + (-2 - (-5))k$$
$$= -i - 7j + 3k$$
$$= \langle -1, -7, 3 \rangle$$

Triple Scaler Product

Three vectors that lie in different planes but share the same initial point determine the adjacent edges of a parallelepiped. The absolute value of the triple scalar product of these vectors represents the volume of the parallelepiped.

If $t = t_1 i + t_2 j + t_3 k$, $u = u_1 i + u_2 j + u_3 k$ and $v = v_1 i + v_2 j + v_3 k$, the triple scalar product is given by

$$t \cdot (u \times v) = \begin{pmatrix} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$$

36. Find the volume of the parallelepiped with adjacent edges t = 2i - 2j + 3k, u = 3i - 7k and v = 2i - 4j

$$t \cdot (u \times v) = \begin{pmatrix} 2 & -2 & 3 \\ 3 & 0 & -7 \\ 2 & -4 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -7 \\ -4 & 0 \end{pmatrix} (2) - \begin{pmatrix} 3 & -7 \\ 2 & 0 \end{pmatrix} (-2) + \begin{pmatrix} 3 & 0 \\ 2 & -4 \end{pmatrix} (3)$$

$$= \begin{bmatrix} 0 - 28 \end{bmatrix} (2) - \begin{bmatrix} 0 - (-14) \end{bmatrix} (-2) + \begin{bmatrix} -12 - 0 \end{bmatrix} (3)$$

$$= -56 + 28 - 36$$

$$= -64 \implies |-64| = 64$$

