CHAPTER (16) **VECTORS**

- **• Physical quantities** (or scalar quantities) speed, mass, time can be completely described by a single number called scalar. This number indicates the magnitude or size of the quantity.
- **• Vector** is a quantity that has both magnitude and direction. The velocity of a car is a vector that describes both the speed and direction of the car.

Example:

Determine the vector quantity from the following

Consider the directed line segment with an initial point *A* (also known as the tail) and terminal point *B* (also known as head) shown.

The direction of a vector is the directed angle between the vector and the positive *x***-axis.**

The direction of a vector can also be given as bearing

A quadrant bearing angle is a directional measurement between 0° and 90° east or west of the north-south line

v is 40 \degree east of south (or south-east) written as $S40\degree E$

A true bearing: is a directional measurement where the angle is measured clockwise from North.

True bearings are always given using three digits 25° written as 025°

from north to the west

The true bearing is 145° from north, so the angle to the south axis is $180 - 145 = 35^{\circ}$

Since the angle is in quadrant *IV*, therefore the quadrant bearing is from south to east $S35^\circ E$

In your operations with vectors, you will need to be \Box Opposite **p** parallel familiar with following vector types.
The two vectors are parallel, opposite in direction

• Parallel vectors have the same or opposite direction but not necessarily the same magnitude

 $a||b||c||e||f$

• Equivalent vectors have the same magnitude and direction $a = c$ **b** a, b, c

- **• Opposite vectors** have the same magnitude but **Proposite direction** $a = -e$
Resultant vector, when two or more vectors are
- added, then sum is a single vector called the resultant.

• Two or more vectors with a sum that is a vector *r* are called **components** for *r*. While components can have any direction, it is often useful to express or resolve a vector into two perpendicular components. The rectangular components are horizontal *(x)* and vertical *(y)*.

$$
|x| = N\cos\theta
$$

 $|y| = N\sin\theta$

but doesn't equivalent \rightarrow parallel

D

In the triangle method head to tail is used $b \rightarrow a$.

then the resultant is c

Vector Operations

if $a = \langle a_1, a_2 \rangle$ and $b = \langle b_1, b_2 \rangle$

• A vector that has a magnitude of 1 unit is called unit vector \mathcal{V}

$$
u = \overline{|v|}
$$

• The unit vectors in the direction of the positive *x***-axis** and *y*-axis are denoted by $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$ respectively. Vectors *i* and *j* are called standard unit vectors.

- The vector sum $ai + bj$ is called linear combination.
- The vector ν can be written in component form or as a linear combination of *i* and *j* using the magnitude and direction angle of the vector.

It also follows that the direction angle θ of vector $v = \langle a, cb \rangle$ an be found by solving trigonometric equation

$$
\tan \theta = \frac{|v| \sin \theta}{|v| \cos \theta} \text{ or } \tan \theta = \frac{b}{a}
$$

On the other hand for a given $v = \langle a, b \rangle$, then θ is given by

Unit Vectors

In the three-dimensional coordinate system, a third axis called *z*-axis that passes through the origin and is perpendicular to both the *x*-axis and *y*-axis

Distance and Midpoint Formula in Space

- The distance between points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$ $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
- The midpoint M of \overline{AB} is given by

$$
M\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)
$$

$$
AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}
$$

= $\sqrt{(1 - (-4))^2 + (0 - 10)^2 + (9 - 4)^2}$
= $\sqrt{5^2 + (-10)^2 + 5^2}$
= $\sqrt{25 + 100 + 25}$
= $\sqrt{150}$
= $\sqrt{6 \cdot 25}$
= $5\sqrt{6}$

$$
\gg\!\!{\rm B}
$$

24. If (3, 4, 4) is the midpoint of
\nAB,
$$
A(-3, 2, 8)
$$
 and $B(9, 6, k)$,
\nthen find the value of k
\nA 4
\nB 6
\nC 2
\nD 0
\n
\n $\frac{z_1 + z_2}{2} = M$
\n $\frac{8 + k}{2} = 4$
\n $8 + k = 8$
\n $k = 0$
\n
\n25. Classify the triangle ABC with vertices
\n $A(3, 6, 1), B(5, 7, 4)$ and $C(1, 5, -2)$
\nA Right
\nB Isosceles
\nC Equilateral
\n $AB = \sqrt{(5-3)^2 + (7-6)^2 + (4-1)^2}$
\n $= \sqrt{2^2 + 1^2 + 3^2}$
\n $= \sqrt{14}$
\n $AC = \sqrt{(3-1)^2 + (6-5)^2(1-(-2))^2}$
\n $= \sqrt{2^2 + 1^2 + 3^2}$
\n $= \sqrt{14}$

 $BC = \sqrt{(5-1)^2 + (7-5)^2 + (4-(-2))^2}$ $= \sqrt{4^2 + 2^2 + 6^2}$
 $BC = \sqrt{(5-1)^2 + (7-5)^2 + (4-(-2))^2}$ $= \sqrt{4^2 + 2^2 + 6^2}$

 $AB = AC$ then it is an isosceles triangle

$$
\gg B
$$

Express Vectors in Space

To find the component form of the directed line segment from $A(x_1, y_1, z_1)$ to $B(x_2, y_2, z_2)$ is $\overrightarrow{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ The unit vectors are: $i = \langle 1, 0, 0 \rangle$, $j = \langle 0, 1, 0 \rangle$, $k = \langle 0, 0, 1 \rangle$

The linear combination of $v = \langle v_1, v_2, v_3 \rangle$ is $v = v_1 i + v_2 j + v_3 k$

 $=\sqrt{56}$

$$
|v| = \sqrt{v_1^2 + v_2^2 + v_3^2}
$$

The unit vector *u* in the direction of *v* is $u = \frac{v}{|v|}$

$$
\overrightarrow{AB} = \langle 3 - (-4), 6 - (-2), -6 - 1 \rangle
$$

= $\langle 7, 8, -7 \rangle$

B

27. The magnitude of the vector
$$
v = 7i + 8j - 7k
$$
 is
\n**A** $\sqrt{22}$
\n**B** 162
\n**C** 22
\n**D** $9\sqrt{2}$
\n $|v| = \sqrt{7^2 + 8^2 + (-7)^2}$
\n $= \sqrt{49 + 64 + 49}$
\n $= \sqrt{162}$
\n $= \sqrt{2 \cdot 81}$
\n $= 9\sqrt{2}$

D

Vector Operations in Space

If $a = \langle a_1, a_2, a_3 \rangle$, $b = \langle b_1, b_2, b_3 \rangle$

Dot Products of Vectors in Space

The dot product of $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$ is defined as $a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$

The vectors *a* and *b* are perpendicular if and only if $a \cdot b = 0$

 $u = \langle 3, -3, 3 \rangle, v = \langle 4, k, 3 \rangle$ \mathbf{A} - 7 **B** – 7 7 **C** 8 **D** 8 – 8

For perpendicular vectors $a \cdot b = 0$ **Example:** $u \cdot v = 3 \cdot 4 + (-3) \cdot k + 3 \cdot 3 = 0$ $= 12 - 3k + 9 = 0$ $=-3k=-21$ $k = 7$ **B**

33. **Find the angle between** *u* **and** *v* $u = \langle \sqrt{2}, 2, 0 \rangle, v = \langle \sqrt{3}, 0, 1 \rangle$ **A** 120° **B** 30°

C 45° **D** 60°

$$
\cos \theta = \frac{u \cdot v}{|u||v|}
$$

\n
$$
u \cdot v = \sqrt{2} \times \sqrt{3} + (2 \times 0) + (0 \times 1)
$$

\n
$$
= \sqrt{6} + 0 + 0 = \sqrt{6}
$$

\n
$$
|u| = \sqrt{(\sqrt{2})^2 + 2^2 + 0^2}
$$

\n
$$
= \sqrt{2} + 4 + 0
$$

\n
$$
= \sqrt{6}
$$

\n
$$
|v| = \sqrt{(\sqrt{3})^2 + 0^2 + 1^2}
$$

\n
$$
= \sqrt{3} + 0 + 1
$$

\n
$$
= 2
$$

 B

$$
\cos \theta = \frac{\sqrt{6}}{2 \cdot \sqrt{6}} = \frac{1}{2}
$$

$$
\cos^{-1} \frac{1}{2} \quad \theta = 60^{\circ}
$$

D

If $a = ai + a₂ j + a₃ k$ and $b = b₁ k + b₂ j + b₃ k$, the cross product of *a* and *b* is the vector $a \times b = (a_1b_1 - a_1b_1)i - (a_1b_1 - a_1b_1)j + (a_1b_2 - a_2b_1)k$

To find the product we can apply the formula for calculating the determinant of a 3×3 matrix.

 $a \times b = \begin{pmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} a_2 & a_3 \\ b_2 & b_3 \end{pmatrix} i - \begin{pmatrix} a_1 & a_3 \\ b_1 & b_3 \end{pmatrix} j + \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} k$

If $a \times b = c$ the *c* is perpendicular to *a* and *b* If *a* and *b* are adjacent sides in a parallelogram, then $|a \times b|$ equals the area of that parallelogram.

Find the area of the parallelogram if $a = -4i + j + 8k$ and $b=3i-4j-3k$ are two adjacent sides of the parallelogram.

Solution:

Step 1:

$$
b = \begin{pmatrix} i & j & k \\ -4 & 1 & 8 \\ 3 & -4 & -3 \end{pmatrix}
$$

= $\begin{bmatrix} -3 - (-32) \end{bmatrix} i - [12 - 24] j + [16 - 3] k$
= $29i + 12j + 13k$

Step 2:

$$
Area = |a \times b| = \sqrt{(29)^2 + 12^2 + 13^2}
$$

$$
= \sqrt{841 + 144 + 169}
$$

$$
= \sqrt{1154}
$$

This question is the same as: Find the cross product of $u = \langle 3, -2, 1 \rangle$ and $v = \langle -3, 3, 1 \rangle$ $u \times v = \begin{pmatrix} i & j & k \\ 3 & -2 & 1 \\ -3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3 & 1 \end{pmatrix} i - \begin{pmatrix} 3 & 1 \\ -3 & 1 \end{pmatrix} j + 3 \begin{pmatrix} 3 & -2 \\ -3 & 3 \end{pmatrix} k$ $= (-2 - 3)i - [3 - (-3)]j + (9 - 6)k$ $=-5i-6j+3k$

Triple Scaler Product

 $=\langle -1, -7, 3 \rangle$

E

Three vectors that lie in different planes but share the same initial point determine the adjacent edges of a **parallelepiped**. The absolute value of the triple scalar product of these vectors represents the volume of the parallelepiped.

If $t = t_1 i + t_2 j + t_3 k$, $u = u_1 i + u_2 j + u_3 k$ and $v = v_1 i + v_2 j + v_3 k$, the triple scalar product is given by $t \cdot (u \times v) = \begin{pmatrix} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$