CHAPTER (16) VECTORS

- **Physical quantities** (or scalar quantities) speed, mass, time can be completely described by a single number called scalar. This number indicates the magnitude or size of the quantity.
- **Vector** is a quantity that has both magnitude and direction. The velocity of a car is a vector that describes both the speed and direction of the car.

Example:

Determine the vector quantity from the following quantities:

quantities.			
A Time	B Distance	C Force	D Mass
E Speed	F Displacement	G Energy	H Gravity
i Pressure	J Velocity	K Area	L Temperature
Momentur	n		

Scalar Quantities magnitude only	Vector Quantities magnitude and direction
Time Distance Mass Speed Energy Area Temperature	Force Displacement Gravity Pressure Velocity Momentum

 Consider the directed line segment with an initial point *A* (also known as the tail) and terminal point *B* (also known as head) shown.

• The direction of a vector is the directed angle between the vector and the positive *x*-axis.

• The direction of a vector can also be given as bearing

A quadrant bearing angle is a directional measurement between 0° and 90° east or west of the north-south line

v is 40° east of south (or south-east) written as $S40^{\circ}E$ **A true bearing:** is a directional measurement where the angle is measured clockwise from North.

True bearings are always given using three digits $_{25^\circ}$ written as $_{025^\circ}$

 $115 - 90 = 25^{\circ}$

from north to the west

The true bearing is 145° from north, so the angle to the south axis is $180-145=35^\circ$

Since the angle is in quadrant IV, therefore the quadrant bearing is from south to east $S35^{\circ}E$

>A

Vector Types

In your operations with vectors, you will need to be familiar with following vector types.

• **Parallel vectors** have the same or opposite direction but not necessarily the same magnitude

$a \parallel b \parallel c \parallel e \parallel f$

• Equivalent vectors have the same magnitude and direction a = c

$a \neq b$	why?
$a \neq d$	why?

- **Opposite vectors** have the same magnitude but opposite direction a = -e
- **Resultant vector,** when two or more vectors are added, then sum is a single vector called the resultant.

Two or more vectors with a sum that is a vector *r* are called components for *r*. While components can have any direction, it is often useful to express or resolve a vector into two perpendicular components. The rectangular components are horizontal (*x*) and vertical (*y*).

$$|x| = N\cos\theta$$

 $|y| = N\sin\theta$

The two vectors are parallel, opposite in direction but doesn't equivalent \rightarrow parallel

⇒D

In the triangle method head to tail is used $b \rightarrow a$,

then the resultant is c

Vector Operations

if $a = \langle a_1, a_2 \rangle$ and $b = \langle b_1, b_2 \rangle$

÷ (1)		27		
		Example K=6_a=<2،4> b= <3،7>		
Addition a+b Subtraction a-b	$\langle a_1 + b_1, a_2 + b_2 \rangle$	$\langle 2+3, 4+7 \rangle = \langle 5, 11 \rangle$		
	$\langle a_1-b_1, a_2-b_2 \rangle$	$\langle 2-3, 4-7 \rangle = \langle -1, -3 \rangle$		
scalar multipliction	$\langle ka_1, ka_1 \rangle$	$6a = \langle 6 \cdot 2, 6 \cdot 4 \rangle$		
		$=\langle 12, 24\rangle$		
16.13 If $-3v = \langle 12, -15 \rangle$, then find <i>v</i>				
A (4, -	-5>	B (-36, 45)		
C (-4	$,5\rangle$	D $\langle 36, -45 \rangle$		
$-3v = \langle 12, -15 \rangle$				
$\frac{-3}{-3}v = \left\langle \frac{12}{-3}, \frac{-15}{-3} \right\rangle$				
$=\langle -4, 5 \rangle$				
16.14 If $A = \langle 1, 3 \rangle, B = \langle 2, 4 \rangle$ then find $2B - A$				
A $\langle 5, 3 \rangle$ B $\langle 3, 5 \rangle$				
C $\langle -2, -2 \rangle$ D $\langle 2, 2 \rangle$				
2B - A				
$2\langle 2, 4 \rangle - \langle 1, 3 \rangle$				
$\langle 4, 8 \rangle - \langle 1, 3 \rangle = \langle 3, 5 \rangle$				
≫B				
Unit Vectors				
• A vector that has a magnitude of 1 unit is called unit				

• A vector that has a magnitude of 1 unit is called unit vector $v = \frac{v}{1-1}$

 $u = \overline{|v|}$

• The unit vectors in the direction of the positive *x*-axis and *y*-axis are denoted by $i = \langle 1, 0 \rangle$ and $j = \langle 0, 1 \rangle$ respectively. Vectors *i* and *j* are called standard unit vectors.

- The vector sum ai + bj is called linear combination.
- The vector *v* can be written in component form or as a linear combination of *i* and *j* using the magnitude and direction angle of the vector.

• It also follows that the direction angle θ of vector $v = \langle a, cb \rangle$ an be found by solving trigonometric equation

$$\tan\theta = \frac{|v|\sin\theta}{|v|\cos\theta} \text{ or } \tan\theta = \frac{b}{a}$$

• On the other hand for a given $v = \langle a, b \rangle$, then θ is given by

Unit Vectors

In the three-dimensional coordinate system, a third axis called *z*-axis that passes through the origin and is perpendicular to both the *x*-axis and *y*-axis

Distance and Midpoint Formula in Space

- The distance between points $A(x_1, y_1, z_1) \text{ and } B(x_2, y_2, z_2)$ $AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$
- The midpoint M of \overline{AB} is given by

$$M\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}, \frac{z_1+z_2}{2}\right)$$

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

= $\sqrt{(1 - (-4))^2 + (0 - 10)^2 + (9 - 4)^2}$
= $\sqrt{5^2 + (-10)^2 + 5^2}$
= $\sqrt{25 + 100 + 25}$
= $\sqrt{150}$
= $\sqrt{6 \cdot 25}$
= $5\sqrt{6}$

16.24 If (3, 4, 4) is the midpoint of

$$AB, A(-3, 2, 8) and B(9, 6, k),$$

then find the value of k
A 4 B 6
C 2 D 0
 $\frac{z_1 + z_2}{2} = M$
 $\frac{8 + k}{2} = 4$
 $8 + k = 8$
 $k = 0$
2
16.25 Classify the triangle ABC with vertices
 $A(3, 6, 1), B(5, 7, 4) and C(1, 5, -2)$
A Right B Isosceles
C Equilateral D Neither
 $AB = \sqrt{(5 - 3)^2 + (7 - 6)^2 + (4 - 1)^2} = \sqrt{2^2 + 1^2 + 3^2} = \sqrt{14}$
 $AC = \sqrt{(3 - 1)^2 + (6 - 5)^2(1 - (-2))^2} = \sqrt{4^2 + 2^2 + 6^2} = \sqrt{56}$
 $AB = AC$ then it is an isosceles triangle

Express Vectors in Space

To find the component form of the directed line segment from $A(x_1, y_1, z_1)$ to $B(x_2, y_2, z_2)$ is $\overline{AB} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$ The unit vectors are: $i = \langle 1, 0, 0 \rangle$, $j = \langle 0, 1, 0 \rangle$, $k = \langle 0, 0, 1 \rangle$

The linear combination of $v = \langle v_1, v_2, v_3 \rangle$ is $v = v_1 i + v_2 j + v_3 k$ The magnitude of the vector $v = \langle v_1, v_2, v_3 \rangle$

$$|v| = \sqrt{v_1^2 + v_2^2 + v_3}$$

The unit vector **u** in the direction of **v** is $u = \frac{v}{v}$

$$\overline{AB} = \langle 3 - (-4), 6 - (-2), -6 - 1 \rangle$$
$$= \langle 7, 8, -7 \rangle$$

≫B

16.27 The magnitude of the vector v = 7i + 8j - 7k is A $\sqrt{22}$ **B** 162 **C** 22 D $9\sqrt{2}$ $|v| = \sqrt{7^2 + 8^2 + (-7)^2}$ $=\sqrt{49+64+49}$ $=\sqrt{162}$ $=\sqrt{2\cdot 81}$ $=9\sqrt{2}$

≫D

16.28 Find the unit vector in the direction of the vector $v = \langle 3, 2, \sqrt{3} \rangle$ $C \left\langle \frac{3}{\sqrt{8}}, \frac{2}{\sqrt{8}}, \frac{\sqrt{3}}{\sqrt{8}} \right\rangle \qquad D \left\langle \frac{\sqrt{8}}{3}, \frac{\sqrt{8}}{2}, \frac{\sqrt{8}}{\sqrt{3}} \right\rangle$ $|v| = \sqrt{3^3 + 2^2 + \left(\sqrt{3}\right)^2}$ $=\sqrt{9+4+3}$ $=\sqrt{16}$ = 4 $u = \frac{v}{|v|} = \frac{3, 2, \sqrt{3}}{4}$ $=\left\langle \frac{3}{4}, \frac{1}{2}, \frac{\sqrt{3}}{4} \right\rangle$

Vector Operations in Space

If $a = \langle a_1, a_2, a_3 \rangle$, $b = \langle b_1, b_2, b_3 \rangle$

Vector operation	Result	Example K = 5 a = <2:1:0> b= <-1:2:7>
Addition <i>a</i> + <i>b</i>	$\langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$	$\langle 2 + (-1), 1 + 2, 0 + 7 \rangle$ $\langle 1, 3, 7 \rangle$
Subtraction $a-b$	$\langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$	$\langle 2 - (-1), 1 - 2, 0 - 7 \rangle$ $\langle 3, -1, -7 \rangle$
Scalar multiplication <i>ka</i>	$\langle k a_1, k a_2, k a_3 \rangle$	$\langle 5(2), 5(1), 5(0) \rangle$ $\langle 10, 5, 0 \rangle$

Dot Products of Vectors in Space

The dot product of $a = \langle a_1, a_2, a_3 \rangle$ and $b = \langle b_1, b_2, b_3 \rangle$ is defined as $a \cdot b = a_1 b_1 + a_2 b_2 + a_3 b_3$

The vectors *a* and *b* are perpendicular if and only if $a \cdot b = 0$

>>A

$$=-3k = -21$$

k = 7

≫B

16.33 Find the angle
$$\theta$$
 between *u* and *v*
 $u = \langle \sqrt{2}, 2, 0 \rangle, v = \langle \sqrt{3}, 0, 1 \rangle$
A 120° B 30°

C 45°

$$\cos \theta = \frac{u \cdot v}{|u| |v|}$$

$$u \cdot v = \sqrt{2} \times \sqrt{3} + (2 \times 0) + (0 \times 1)$$

$$= \sqrt{6} + 0 + 0 = \sqrt{6}$$

$$|u| = \sqrt{(\sqrt{2})^2 + 2^2 + 0^2}$$

$$= \sqrt{2} + 4 + 0$$

$$= \sqrt{6}$$

$$|v| = \sqrt{(\sqrt{3})^2 + 0^2 + 1^2}$$

$$= \sqrt{3} + 0 + 1$$

$$= 2$$

$$\cos\theta = \frac{\sqrt{6}}{2\sqrt{6}} = \frac{1}{2}$$
$$\cos^{-1}\frac{1}{2} \quad \theta = 60^{\circ}$$

≫D

Cross Product of Vectors in Space

If $a = ai + a_2 j + a_3 k$ and $b = b_1 k + b_2 j + b_3 k$, the cross product of *a* and *b* is the vector $a \times b = (a_2 b_3 - a_3 b_2)i - (a_1 b_3 - a_3 b_1)j + (a_1 b_2 - a_2 b_1)k$

To find the product we can apply the formula for calculating the determinant of a 3×3 matrix.

 $a \times b = \begin{pmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix} = \begin{pmatrix} a_2 & a_3 \\ b_2 & b_3 \end{pmatrix} i - \begin{pmatrix} a_1 & a_3 \\ b_1 & b_3 \end{pmatrix} j + \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} \mathbf{k}$

If $a \times b = c$ the *c* is perpendicular to *a* and *b* If *a* and *b* are adjacent sides in a parallelogram, then $|a \times b|$ equals the area of that parallelogram.

Example:

Find the area of the parallelogram if a = -4i + j + 8k and b = 3i - 4j - 3k are two adjacent sides of the parallelogram.

Solution:

Step 1:

$$b = \begin{pmatrix} i & j & k \\ -4 & 1 & 8 \\ 3 & -4 & -3 \end{pmatrix}$$
$$= \begin{bmatrix} -3 - (-32) \end{bmatrix} i - \begin{bmatrix} 12 - 24 \end{bmatrix} j + \begin{bmatrix} 16 - 3 \end{bmatrix} k$$
$$= 29i + 12j + 13k$$

Step 2:

$$Area = |a \times b| = \sqrt{(29)^2 + 12^2 + 13^2}$$
$$= \sqrt{841 + 144 + 169}$$
$$= \sqrt{1154}$$

=(-2-3)i-[3-(-3)]j+(9-6)k

This question is the same as: Find the cross product of $u = \langle 3, -2, 1 \rangle$ and $v = \langle -3, 3, 1 \rangle$ $u \times v = \begin{pmatrix} i & j & k \\ 3 & -2 & 1 \\ -3 & 3 & 1 \end{pmatrix} = \begin{pmatrix} -2 & 1 \\ 3 & 1 \end{pmatrix} i - \begin{pmatrix} 3 & 1 \\ -3 & 1 \end{pmatrix} j + 3 \begin{pmatrix} 3 & -2 \\ -3 & 3 \end{pmatrix} k$

= -5i - 6j + 3k

Triple Scaler Product

= -i - 7j + 3k

 $=\langle -1, -7, 3 \rangle$

≫C

Three vectors that lie in different planes but share the same initial point determine the adjacent edges of a **parallelepiped**. The absolute value of the triple scalar product of these vectors represents the volume of the parallelepiped.

If $t = t_1 i + t_2 j + t_3 k$, $u = u_1 i + u_2 j + u_3 k$ and $v = v_1 i + v_2 j + v_3 k$, the triple scalar product is given by $t \cdot (u \times v) = \begin{pmatrix} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$