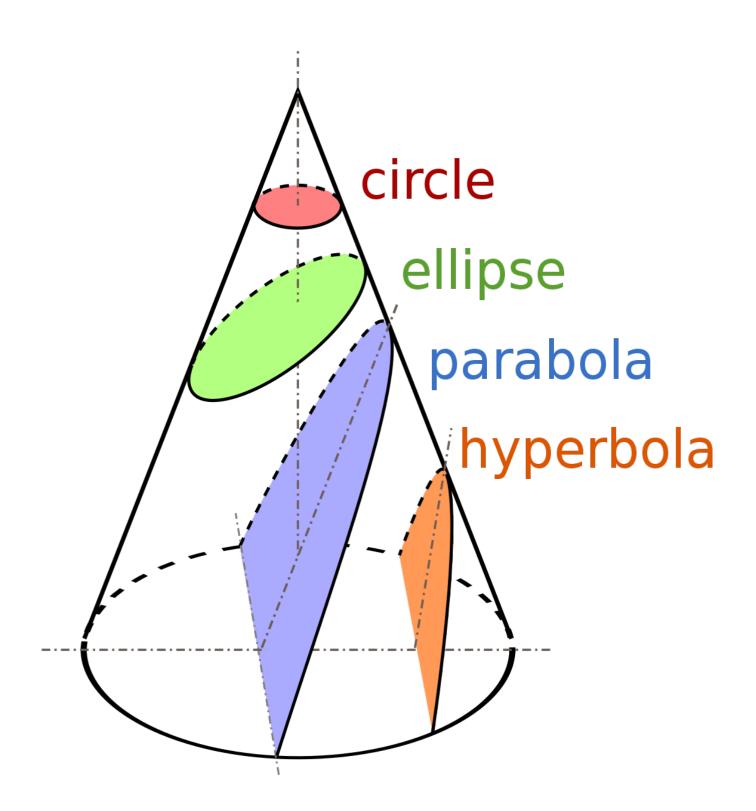
CHAPTER (15) Conic Sections



в 8

D 16

Compare to $(y - k)^2 = 4p(x - h) |4p|$ is the focal chord

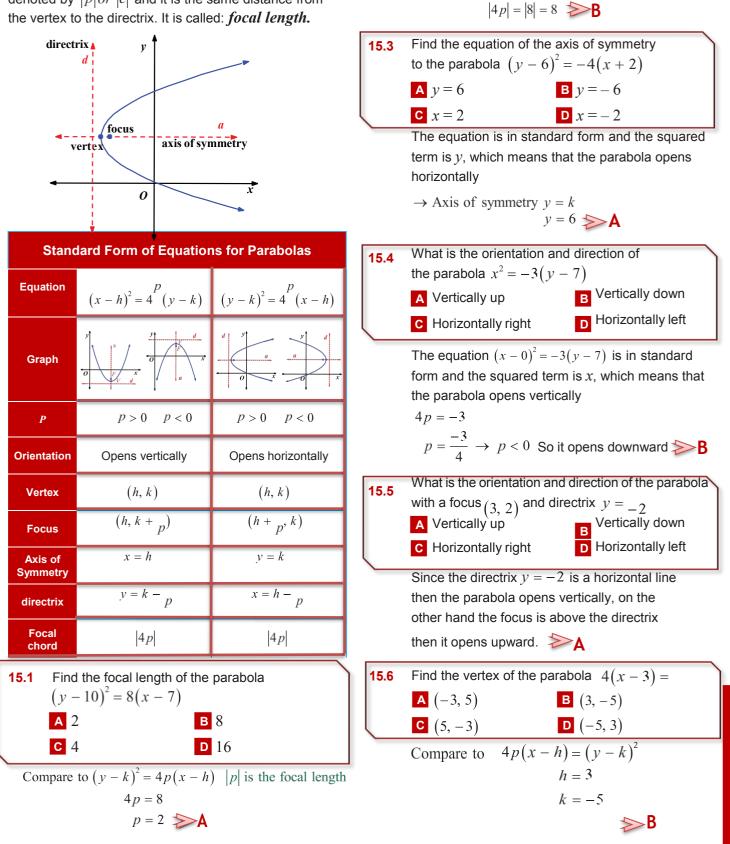
Find the focal chord of the parabola

 $(y-10)^2 = 8(x-7)$

1) Parabolas

A parabola represents all points in a plane that are equidistant from a fixed point called the focus and a specific line called the directrix.

Usually, the distance from the vertex to the focus is denoted by |p|or|c| and it is the same distance from the vertex to the directrix. It is called: *focal length.*



15.2

A 2

C 4

Focus is $(h, k) \rightarrow (3, -5)$

15.7 Write the equation of the parabola with the focus (0, 0), axis of symmetry is the *y*-axis and the parabola passes through the point (2, -1)**A** $4x^2 = y$ **B** $x = -4y^2$

C $x^2 = -4y$ **D** $4x = y^2$

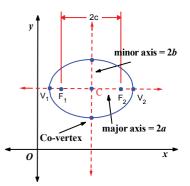
The *axis* of symmetry is the *y*-axis then it is opens vertically and the squared term should be x, therefore options B and D are eliminated.

The given points should satisfy the required equation.

- -(0, 0) satisfy all equations.
- The point $(2, -1) \rightarrow x^2 = -4y \rightarrow (2)^2 = -4(-1)$ True

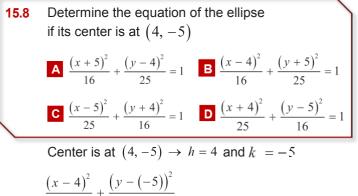
2) Ellipses

An ellipse is all points in a plane such that the sum of the distance from two fixed points, called foci, is constant.



Distance and Symbols						
From	То	Symbol				
Vertex	Center	а				
Co-vertex	Center b					
Focus	Center	С				
Vertex	Vertex	2a = major axis				
Co-vertex	Co-vertex	2b = minor axis				
Focus	Focus	2c				

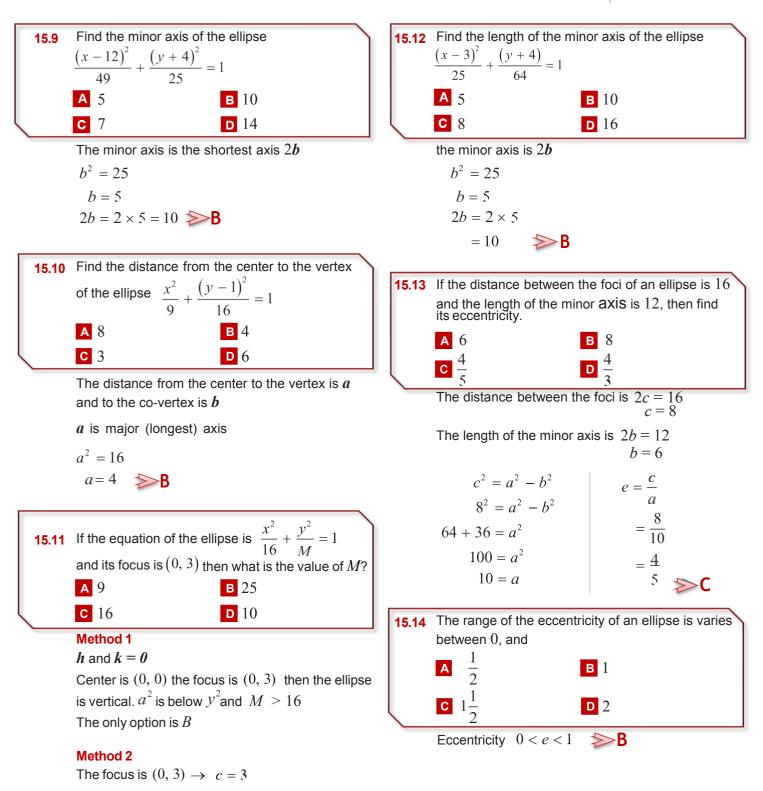
Standard Forms of Equations for Ellipses				
Equation	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)}{a^2} = 1$		
Graph				
Orientation	Horizontal major axis	Vertical major axis		
Center	(h, k)	(h, k)		
Foci	$(h\pm c,k)$	$(h, k \pm c)$		
Vertices	$(h \pm a, k)$	$(h, k \pm a)$		
Co-vertices	$(h, k \pm b)$	$(h \pm b, k)$		
Major axis	y = k	x = h		
Minor axis	x = h	y = k		
<i>a, b, c</i> relationship	a > b $c^2 = a^2 - b^2 \rightarrow c = \sqrt{a^2 - b^2}$			
Eccentricity	$e = \frac{c}{a}$ 0 < e < 1 If $e = 0$, then the ellipse becomes a circle.			



$$\frac{(x-4)^2}{2} + \frac{(y+5)^2}{2}$$

The denominator does not affect the center

>B



$$b^{2} = 16 \rightarrow b = 4$$

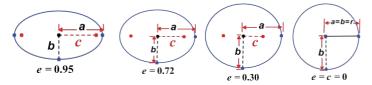
$$c^{2} = a^{2} - b^{2}$$

$$3^{2} = a^{2} - 16$$

$$a^{2} = 25 = M \implies B$$

3) Circles

The value of c represents the distance between one of the foci and the center of the ellipse. As the foci moves closer together, c and e approach 0 the ellipse is a circle and both a and b are equal to the radius of the circle.



Standard Form of Equation for Circles

The standard form of an equation for a circle with center (h, k) and radius **r** is $(x - h)^2 + (y - k)^2 = r^2$



If the circle passes through a point, then the point should satisfy its equation.

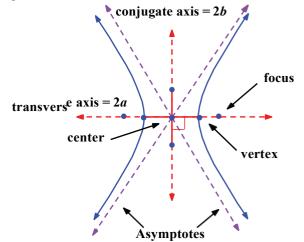
$$(x-2)^{2} + (y-4)^{2} = 16$$

(2-2)² + (8-4)² = 15
0+4² = 16 D

Hyperbolas

A hyperbola is all the points in a plane such that the absolute value of the difference of the distances from two foci is constant.

Like an ellipse, a hyperbola has two axes of symmetry. The *transverse* axis has a length of 2a units and connects the vertices. The *conjugate* axis is perpendicular to the transverse, passes through the center and has a length of 2b units.



From Symbol Тο Vertex Center а Vertex Asymptote b Focus Center С Vertex Vertex 2a = transverse axis perpendicular to the transverse, 2b = conjugate axispasses through the center Focus Focus 2*c*

Distance and Symbols

Standard Forms of Equations for Hyperbolas		s for Hyperbolas	15.18 Find the equation of the transverse axis $(x-3)^2 + (y-2)^2$	
Equation	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$	of the hyperbola $\frac{(x-3)^2 (y-2)^2}{16 25} = 1$ A $y = -2$ B $y = 2$	
Graph	F. C. F.		C $x = 3$ The variable y is at the right; therefore, the transverse is horizontal $y = k \rightarrow y = 2$	
Orientation	Horizontal transverse axis	Vertical transverse axis	15.20 Find the distance from the center to the $(x-3)^2 - (y-3)^2$	
Center	(h, k)	(h, k)	vertex of the hyperbola $\frac{(x-3)^2}{9} - \frac{(y-3)^2}{25} = 1$	
Vertices	$(h \pm a, k)$	$(h, k \pm a)$	A 9 B 3 C 25 D 5	
Foci	$(h \pm c, k)$	$(h, k \pm c)$	Distance is a	
Transverse axis	y = k	x = h	$a^2 = 9 \rightarrow a = 3 \gg B$ 15.21 Find the length of the transverse to the hyperbola	
Conjugate axis	x = h	y = k	$\frac{(x-3)^2}{36} - \frac{y^2}{25}$	
Asymptotes	$(y-k) = \pm \frac{b}{a}(x-h)$	$\left(y-k\right) = \pm \frac{a}{b}\left(x-h\right)$	A 6 B 36	
<i>a, b, c</i> relationship			C 12 D 5 length of the transverse is $2a \rightarrow a^2 = 36$	
Eccentricity	$e = \frac{c}{a}$	e > 1	a = 6 $\rightarrow 2a = 12 $	
of the A y C y The v	27	1 $y = \pm \frac{25}{16} x$ $y = \pm \frac{16}{25} x$	$\frac{(y-3)^2}{49} - \frac{(x+5)^2}{36} = 1$ A (-5, -3) B (5, -3) C (5, 3) h = -5, k = 3 Center $(h, k) \rightarrow (-5, 3)$ D (-5, 3)	
$a^2 =$ (y -	$= 25 \rightarrow b = 5$ $16 \rightarrow a = 4$ $(k) = \pm \frac{b}{a} (x - h)$ $(0) = \pm \frac{5}{4} (x - 0)$ $y = \pm \frac{5}{4} x$		15.23 Find the intersection point of the transversal and the conjugate axis of the hyperbola $\frac{(y+3)^2}{16} - \frac{(x-4)^2}{25} = 1$ A (4, 3) B (3, 4) C (-4, 3) D (4, -3) The intersection point is the same as the center. h = 4, k = -3 Center $(h, k) \rightarrow (4, -3)$	

15.24 Determine the conic section that has eccentricity
greater than 1 (e > 1)
A Circle **B** Parabola
C Ellipse **D** Hyperbola
Recall Circle
$$\rightarrow e = 0$$

Ellipse $\rightarrow 0 < e < 1$
Hyperbola $\rightarrow e > 1$
15.25 Find the equation of the asymptotes
of the hyperbola $\frac{(y-5)^2}{16} - \frac{(x+1)^2}{25} = 1$
A $y - 5 = \pm \frac{16}{25}(x+1)$ **B** $y - 5 = \frac{25}{16}(x+1)$
C $y - 5 = \pm \frac{4}{5}(x+1)$ **D** $y - 5 = \pm \frac{5}{4}(x+1)$
Since y is the first term; then it has
a vertical transverse axis. $k = 5, h = -1$
 $a^2 = 16$
 $a = 4$
 $b^2 = 25$
 $b = 5$
Asymptotes $y - k = \pm \frac{a}{b}(x-h)$
 $y - 5 = \pm \frac{4}{5}(x+1)$ **D** $y - 5 = \pm \frac{4}{5}(x+1)$
15.26 Find the eccentricity of hyperbola
 $\left(\frac{x}{5} - \frac{y}{4}\right)\left(\frac{x}{5} + \frac{y}{4}\right) = 1$
A $\frac{\sqrt{41}}{5}$ **B** $\frac{\sqrt{41}}{4}$
C $\frac{3}{5}$ **D** $\frac{3}{4}$
Recall $(x - y)(x + y) = x^2 - y^2$
 $\left(\frac{x}{5} - \frac{y}{4}\right)\left(\frac{x}{5} + \frac{y}{4}\right) = \frac{x^2}{5^2} - \frac{y^2}{4^2} = 1$
 $a = 5$
 $b = 4$
 $c = \sqrt{a^2 + b^2}$
 $c = \sqrt{5^2 + 4^2} = \sqrt{41}$
 $e = \frac{c}{a}$
 $= \frac{\sqrt{41}}{5}$
A $\frac{\sqrt{41}}{5}$
B $\frac{\sqrt{41}}{5}$
b $\frac{\sqrt{41}}{5}$
 $c = \sqrt{5^2 + 4^2} = \sqrt{41}$
 $e = \frac{c}{a}$
 $= \frac{\sqrt{41}}{5}$
C $\frac{\sqrt{41}}{5}$
D $\frac{\sqrt{41}}{5}$
D $\frac{\sqrt{41}}{5}$
D $\frac{\sqrt{41}}{5}$
D $\frac{\sqrt{41}}{5}$
D $\frac{\sqrt{41}}{5}$
 $\frac{$

5) Identify Conic Sections

You can determine the type conic when the equation for the conic in general form.

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey F = 0$$
 The discriminant,

 $B^2 - 4AC$, can be used to identify the conic.

Discriminant	Conic
$B^2 - 4AC < 0, B = 0 \text{ and } A = C$	Circle
$B^2 - 4AC < 0$, either $B \neq 0$ or $A \neq C$	Ellipse
$B^2 - 4AC = 0$	Parabola
$B^2 - 4AC > 0$	Hyperbola

