CHAPTER (8) CIRCLES AND ARCS

- Circle is the set of all points equidistant from a given point called the center (*P*)
- A diameter is a segment that contains the center of the circle and has both end points on the circle. <u>AB</u>
- A radius is segment that has one end point at the center and the other end point on the circle. **BC**
- Diameter is twice the radius d = 2r
- A central angel is an angle whose vertex is the center of the circle. $\angle CPB$
- An arc is a part of a circle.
- Semicircle is half of a circle (180°)
- A minor arc is smaller than a semicircle ($<180^\circ$) \widehat{RS}
- The measure of the minor arc is equal to the measures of the corresponding central angle $mAC = m \angle APC = 55^{\circ}$
- A major are is larger than a semicircle (>180°) \overline{STR}
- The measure of the major arc is equal to the measures of the related minor arc subtracted from $360^{\circ} mCBA = 360 mAC = 305^{\circ}$
- The measure of the arc formed by two adjacent arcs is the sum of the measures of the two arcs $\widehat{mACB} = \widehat{m\angle AC} + \widehat{m\angle CB}$
- A chord is a segment that has two end points on the circle \overline{DE}
- In a circle: Congruent Chords ↔ Congruent Arcs
- The sum of non over lapping central angles is 360°

The semicircle \widehat{DAC} contains the arcs \widehat{DA} , \widehat{AB} and \widehat{BC}

$$\widehat{mAD} + \widehat{mAB} + \widehat{mBC} = 180^{\circ}$$

$$\widehat{mAD} + 4\widehat{mBC} + \widehat{mBC} = 180^{\circ}$$

$$\widehat{mAD} + 5\widehat{mBC} = 180^{\circ}$$

$$6\widehat{mAD} = 180^{\circ}$$

$$\widehat{mAD} = 30^{\circ}$$

$$\widehat{AD}$$

Congruent chords \leftrightarrow Congruent arcs

$$m\widehat{AB} + m\widehat{BC} + m\widehat{CA} = 360^{\circ}$$

$$80 + x + x = 360^{\circ}$$

$$2x + 80 = 360^{\circ}$$

$$=$$

$$2x - 280^{\circ}$$

$$x = 140^{\circ} \checkmark C$$

Theorem: In a circle, if a diameter is perpendicular to a chord, then it bisects the chord and vice versa

the radius is $1 + 4 = 5 \rightarrow AB = 5$

Using Pythagorean triple (3, 4, 5) the third *EB* side is 3

Since the perpendicular radius bisects the chord then CE = EB

$$CB = CE + EB$$
$$= 3 + 3 = 6 \Rightarrow B$$

Inscribed Angle

Inscribed angle is an angle whose vertex is on the circle and whose sides are chords of the circle

There are three cases to consider

The center is on the side of the angle

The center is inside the angle

The center is outside the angle

Inscribed Angle Theorem

S O P

An angle inscribed in a semicircle is a right angle Two inscribed angles that intercept the same are congruent The opposite angles of a quadrilateral inscribed in a circle are supplementary.

The measure of an inscribed angel is half

$$m \angle V = \frac{1}{2}m\widehat{UV}$$

If \overline{AB} is a diameter and $\overline{EF} \cong \overline{FG}$, $\leftrightarrow \overline{AB} \perp \overline{EG}$

Tangent Lines

- A tangent to a circle is a line in the plane of the circle that intersects the circle in exactly one point.
- The point where a circle and a tangent intersect is the point of tangency.
- If a line is tangent to a circle, then the line is perpendicular to the radius at the point of tangency.
- If two tangent segments to a circle share a common endpoint outside the circle, then the two segments are congruent.

Μ

• The measure of an angle formed by a tangent and a chord is half the measure of the intercepted arc

$$m \angle B = \frac{1}{2} \widehat{BDC}$$

The tangent is perpendicular to the diameter $\overline{CB} \perp \overline{AB}$ ΔABC is a right triangle and by the Pythagorean triple $2(5,12,13) \rightarrow (10,24,26) \rightarrow CB = 10$

 \overline{CB} is the diameter of the circle: $r = \frac{d}{2} = 5$

The two tangents are congruent

```
2x + 4 = 4x - 610 = 2xx = 5 \Rightarrow \mathbf{B}
```


Angle Measures and Segment Lengths

1- The measure of an angle formed by two lines that intersect inside a circle is half the sum of the measures of the intercepted *arcs*.

Equation of a Circle

- An equation of a circle with center (h,k) and radius r is $(x-h)^2 + (y-k)^2 = r^2$
- If the center is (0,0) then the equation is $x^2 + y^2 = r^2$

22. Find the center of the circle
$$(x+7)^2 + (y-5)^2 = 16$$

A $(-7,5)$
C $(5,-7)$
B $(7,-5)$
D $(-5,7)$
C $(x-h)^2 + (y-k)^2 = r^2$
 $(x-(-7))^2 + (y-5)^2 = 16$
 $\rightarrow h = -7$
 $\rightarrow k = 5$
Center $(-7, 5)$

$$r^{2} = 25$$

$$r = 5$$

$$d = 2r$$

$$= 2 \cdot 5$$

$$= 10 \qquad \blacktriangleright \mathbf{A}$$