CHAPTER (11) PERIODIC FUNCTIONS AND TRIGONOMETRY

Radian Measure

A radian is the measure of a central angle that intercepts an arc with length equal to the radius of the circle

- To convert degrees to radians: Multiply by $\frac{\pi}{180^{\circ}}$
- To convert radians to degrees:Multiply by $\underline{^{180^{0}}}$
- Example: What is the degree measure of an angle
- of $\frac{3\pi}{4}$? • Solution: $\frac{-3\pi}{4} \cdot \frac{180^{\circ}}{\pi} = -135$
- What is the radian measure of an angle of 27°?

≫D

Trigonometric Ratios for a Right Triangle

If θ is an acute angle of a right triangle, \mathcal{M} s the length of the adjacent leg (\mathcal{ADJ}) \mathcal{Y} is the length of the opposite leg (\mathcal{OPP}), and r is the length of the hypotenuse (\mathcal{HYP}) then the trigonometric ratios of θ are as follows:

$\sin \theta = \frac{OPP}{HYP} = \frac{y}{r}$	$\csc \theta = \frac{HY}{OP}$	$\frac{P}{P} = \frac{r}{y}$	$\csc \theta = \frac{1}{\sin \theta} \leftrightarrow \sin \theta = \frac{1}{\csc \theta}$		
$\cos \theta = \frac{ADJ}{HYP} = \frac{x}{r}$	$\sec \theta = \frac{HYP}{ADJ} = \frac{r}{x}$		$\sec \theta = \frac{1}{\cos \theta} \leftrightarrow \cos \theta = \frac{1}{\sec \theta}$		
$\tan \theta = \frac{OPP}{ADJ} = \frac{y}{x}$	$\cot \theta = \frac{ADJ}{OPP} = \frac{x}{y}$		$\tan \theta = \frac{1}{\cot \theta} \leftrightarrow \cot \theta = \frac{1}{\tan \theta}$		
$\tan \theta = \frac{\sin}{\cos \theta}$	$\frac{\theta}{\theta}$	$\cot \theta = \frac{\cos \theta}{\sin \theta}$			
$r = \sqrt{x^2 + v^2}$					

Use Pythagorean triples to find the third side 2(3,4,5)

≫B

Reference Angle

For any angle in standard position, reference angle is, the smallest, non-negative, angle $0^{\circ} \le \theta \le 90^{\circ}$

Quadrant	Measure of angle ^e		Measure of reference angle ^e	
Ι	$0 \rightarrow 90^{\circ} \qquad 0 -$	$\rightarrow \frac{\pi}{2}$	heta ' = $ heta$	
II	$90^{\circ} \rightarrow 180^{\circ} \frac{\pi}{2}$	$\rightarrow \pi$	$180^{\circ} - \theta$	$\pi - heta$
III	$180^\circ \rightarrow 270^\circ \pi$	$\rightarrow \frac{3\pi}{2}$	$\theta - 180^{\circ}$	$\theta - \pi$
IV	$270^\circ \to 360^\circ \qquad \frac{3\pi}{2}$	$\rightarrow 2\pi$	$360^{\circ} - \theta$	$2\pi - \theta$

In other words, just think of the angle between terminal side and the nearest x-axis.

11.15 Which angle has a negative tan and cos

 $\cos\theta$ is negative in quadrants II, III $\tan\theta$ is negative in quadrants II and IV They are both negative in quadrant II

≫B

 $\tan 150 = -\tan (180 - 150) \qquad \theta \text{ is II}$ $= -\tan 30 \qquad \qquad \tan \text{ is negative}$ $= \frac{-\sqrt{3}}{2} \qquad \qquad \clubsuit \mathbf{B}$

