CHAPTER (10) **PROBABILITY AND STATISTICS**

* **Probability** measures how likely it is for an event to occur

- * Probability for any even X, P(X)
- The probability of an impossible event is 0 (or 0%)
- The probability of a certain event is 1 (or 100%)
- Otherwise the probability of an event is a number between 0 and 1 (or between 0% and 100%)

 $0 \le P(X) \le 1$

Experimental probability can be obtained by gathering data from observation. Each observation is an experiment or a trial

 $P(\text{event}) = \frac{\text{Number of times the event occurs}}{\text{Number of trials}}$

Counting Principle

If an event M can occur in m ways and is followed by event N that can occur in n ways, then event M followed by even N can occur in $m \cdot n$ ways

10.1	How m closet	ay wa	y can you c	hoose	clothes fi	rom the
	Skirt	2	blouse	5	pants	4
	A 20 B 40					
	C 10	D 11				

Using the fundamental counting principle

 $2 \times 5 \times 4 = 40$

```
≽ B
```


Each book can be arranged in three ways, but we have 4 books so it is $3 \times 3 \times 3 \times 3 = 81$

≫D

A 50 C 90 B 100D 16

The number of first possible outcomes are 10, since the card will be replaced again, then the number of the second outcomes is 10 too, using counting principle

 $10 \times 10 = 100$

Note: It will be the same question if it is: two rolls of a standard number cube.

There are 36 possible equally likely out comes. The favorable outcomes are those with a sum of 5

$$P(\text{sum 5}) = \frac{4}{36} = \frac{1}{9}$$

Using **factorial notation** you can write 3.2.1 as 3! read three factorial

n factorial is $n! = n \times (n-1)!$

0! = 1 1! = 1 $2! = 2 \times 1 = 2$ $3! = 3 \times 2 \times 1 = 6$ $4! = 4 \times 3 \times 2 \times 1 = 24$ $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$

Note: $5! = 5 \times 4! = 5 \times 24 = 120$

Permutation is an arrangement of terms in a particular order. In other words, the order of the terms is important

The number of permutations of n items of a set arranged r items at a time is

$$_{n} \mathbf{P}_{\mathbf{r}} = \frac{n!}{(n-r)!} \quad \text{for } 0 \le r \le n$$

Find permutation mentally: Find $_5$ P_3 Start from 5 and multiply by $5\cdot(5\text{-}1)\cdot(5\text{-}2)$ (r times) $5\cdot4\cdot3=60$

Number of different permutation of *n* objects where there are r_1 repeated items, r_2 repeated items r_k , repeated

Items is $\frac{n!}{r_1!r_2!...r_k!}$

If n objects are arranged in a circle without a reference point then there are (n-1)! permutations

If *n* objects are arranged in a circle **with a fixed Reference point,** then there are *n*! permutations. **Combinations** is a selection in which order does not matter

The number of combination of n items of a set chosen r items at a times is

$$_{n}C_{\mathrm{r}} = \frac{n!}{r!(n-r)!}$$
 for $0 \le r \le n$

Find combination mentally: Find $_{7}C_{3}$

Start from 7 descending *r* times

start from 1 to
=
$$\frac{7 \cdot 6 \cdot 5}{1 \cdot 2 \cdot 3} = 7 \cdot 5 = 35$$

Dependent and Independent Events

Probability of *A* and *B* (**Independent**) If *A* and *B* are independent events,

 $P(A \text{ and } B) \rightarrow P(A \cap B) = P(A) \cdot P(B)$

Example of independent events

- Pick a card with replacement then picking another card
- Roll a number cube, then spin a spinner

Probability of A and B (Dependent)

If A and B are dependent events

 $P(A \text{ and } B) \rightarrow P(A \cap B) = P(A) \cdot P(B \setminus A)$

Example of dependent events

- Pick one flash card, then another from a stack of 30 flash cards
- A month is selected at random then a day of that month of that month is elected.

Conditional Probability

- The probability that an event *B* will occur given that another event has already occurred is called **conditional probability.**
- You write conditional probability of event *B* given that event *A* occurs as *P*(*B* \ *A*) and read: The probability of event *B* given even *A*
- For any two events *A* and *B* with $P(A) \neq 0$

$$P(A \setminus A) = \frac{P(A \cap B)}{P(A)}$$

10.17 If a standard number cube rolled 8 times and all outcomes were odd numbers then what is theoretical probability to get an even number in the 9th roll?

Rolling a cube 8 time one time after the other are independent events.

$$\frac{\text{Get even number 9}^{\text{th}} \text{roll}}{\text{all out comes}} = \frac{3}{6} = \frac{1}{2}$$

The Total number of marbles: 4+6=10After drawing the first marble the total number of marble decreased by one but the blue marbles are the same.

n = 10 - 1 = 9

$$P(\text{Blue}) = \frac{6}{9}$$
$$= \frac{2}{3}$$

Tossing a coin 3 times are independent events.

$$P(\text{Head 1 toss}) = \frac{1}{2}$$

$$P(\text{Head 3 times tossing}) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

$$B$$

10.20 What is the probability of getting a number greater than 3 and a head on one roll of a standard number cube and on tossing a coin.

Let *A* Represents getting number greater than 3: $\{4,5,6\}$ and *B* represents getting a head: $\{head\}$

4

2

3

$$P(A) \frac{3}{6} \frac{1}{2}$$

$$P(B) = \frac{1}{2}$$

$$P(A \cap B) = P(A) \cdot P(B)$$

$$P(A \cap B) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$$

≫B

10.23 What is the probability that a customer pays the bill online given that the customer is male.

$$P(\text{male}) = 12 + 8 = 20$$

$$P(\text{online} \cap \text{male}) = 12$$

$$P(\text{online} / \text{male}) = \frac{P(\text{online} \cap \text{male})}{P(\text{male})}$$

$$= \frac{12}{3}$$

10.24 What is the probability that a person is a female given that the person applies shampoo directly to the head.

20 5

$$P(\text{directly}) = 2 + 6 = 8$$

 $P(\text{female} \cap \text{directly}) = 6$

 $P(\text{female / directly}) = \frac{P(\text{female } \cap \text{ directly})}{P(\text{directly})}$ $= \frac{6}{8} = \frac{3}{4}$

P(D Given that B occurs)

 $\rightarrow P(D/B) = \frac{z}{x+z}$

D

y

Z

Probability of A or B

Two events that have common out comes are called **exclusive** events.

Two events that cannot happen at the same time are **mutually exclusive** events.

 $P(A \cap B) = 0$ $P(A \text{ or } B) \rightarrow P(A \cup B) = P(A) + P(B)$

Example

Roll a standard number cube:

- Rolling a 2 and 3 → **mutually** exclusive
- Rolling an even number and a multiple of 3 → Not mutually exclusive

P (round or green) = *P* (round) + *P* (green) – *P* (round and green)

 10.26 What is the probability that a day is chosen at. random to be Sun on Tue.

 A
 0.3

 B
 0.5

 C
 0.7
 D
 0.8

 0.35
 0.3
 0.3
 0.3

 0.25
 0.2
 0.15
 0.15

Two odd numbers

0.1

 $= \{(1,3), (1,5), (3,5), (3,1), (5,1), (5,3), (1,1), (3,3), (5,5)\}$ The sum is $4 = \{(1,3), (3,1), (2,2)\}$ Odd and Sum is $4 \rightarrow \{(1,3), (3,1)\}$

$$P(\text{odd}) = \frac{9}{36}$$
$$P(\text{sum 4}) \frac{3}{36}$$

$$P \text{ (odd } \cap \text{Sum is 4)} = \frac{2}{36}$$

 $P(\text{odd} \subseteq \text{Sum is 4}) = P(\text{odd}) + P(\text{Sum is 4}) - P(\text{odd} \subseteq \text{Sum is 4})$

$$=\frac{9}{36} + \frac{3}{36} - \frac{2}{36} - \frac{10}{36} - \frac{10}{$$

36

≳C

Margin of error $= \pm \frac{1}{\sqrt{n}}$ n = number of population

CHAPTER (10) PROBABILITY AND STATISTICS

Total number of students = 2+4+9+6+4 = 25Maximum got B means = B+C+D+E= 6+9+4+2

= 21

Percentage = $\frac{21}{25}$ = 84%

Measures of central Tendency

Mean	sum of data values Number of data values	Used if the data values have no outlier
Median	 arrange the data in order Choose the middle value of odd number data values Choose the mean of two middle values for an even number of data values 	Used if the data values have outlier and no gabs
Mode	The most frequently occurring values	Used if the data value have repeated values

D Standard Deviation

≫B

Measures of central tendency are 3: mean, median and mode

Median =
$$\frac{69+81}{2} = \frac{150}{2} = 75$$

\gg A

Standard Deviation

Variance and standard deviation are measures showing how much data values deviate from the mean

Symbol	Read	Represents	
σ	Sigma	Standard deviation	
σ^2	Sigma squared	Variance	
\overline{x} or μ	x bar or meo	Mean of the <i>n</i> values in a data set	

Steps to find variance and standard deviation

1) Find the mean \overline{x} of the *n* values in the data set

2) Find the difference $x - \overline{x}$ between each value *x* and mean

- 3) Square each difference $(x \overline{x})^2$
- 4) Find the mean of these squares = variance

$$\sigma^2 = \frac{\sum (x - \overline{x})^2}{n}$$

deviation

 $P(A \text{ or } B) \rightarrow P(A \cup B) = P(A) + P(B) - P(A \cap B)$

5) The square root of the variance is the standard

$$\sigma = \sqrt{\frac{(x - \overline{x})^2}{n}}$$

- Range is the deference between the greatest and
- least value |Greatest Least |
- Standard deviation varies directly with the range

variance =
$$\sigma^2$$
 = (standard deviation)²

 $=9^2 = 81$

≫B

Normal Distribution

A normal distribution has data that vary randomly from the mean. The graph of a normal distribution is a normal curve.

P(67 < height < 74.5) = 0.34 + 0.34 + 0.135 = 0.815

