CHAPTER (9) REASONING AND PROOF

Statements and Negations

- Statement is a sentence that could be true (T) or false (F). Usually represented by p, q, r, s
- The negation of a statement p is the opposite of the statement. The symbol $\sim p$ and is read 'not p'.

$\sim p$
F
Т

Counter example is an example that shows a conjecture is incorrect

Example

If $x^2 = 36$ then x = 6 the counter example is x = -6 since $(-6)^2 = 25$

9.1 Find a counter example for the statement: if x is a real number then $x^2 \ge x$ A x = 2B x = -2

A
$$x = 2$$

C $x = \frac{3}{2}$

$$x = -2$$

D *X*

By trying the options:

	x	x^2	$x^2 \ge x$
А	2	4	Т
В	-2	4	Т
С	3 2	$\frac{15}{4}$	Т
D	$\frac{1}{2}$	$\frac{1}{4}$	F

Angles $\angle 1$ and $\angle 2$ share the same vertex in all the four options but they don't share a common side in option *D*, therefore it is a counter example.

≫D

The divisibility rule of 4 states that the first two digits should be divisible by $4 \rightarrow 24 \div 4 = 6$ "2924 *is divisible by* 4" is a true statement and its negation is false **D**

Compound Statement

Conjunction: Connect two or more statements with *``and''* $p \land p$, read as p and q

Disjunction: correct two or more statements with 'or' $p \lor p$, read as p or q**Conditional** is an if then statement $p \to q$. Read as: if p then q or p implies q

Hypothesis: is the part p**Conclusion:** is the part q

р	q	$p \wedge p$	$p \lor p$	$p \rightarrow p$
Т	Т	Т	Т	Т
Т	F	F	Т	F
F	Т	F	Т	Т
F	F	F	F	Т

Let *p* is the hypothesis: $m \angle A = 115^{\circ}$ and *q* is the conclusion: $\angle A$ is obtuse

Statement	How to write it	Example	Symbol	Truth value
Conditional	Use the given hypothesis and conclusion	if $m \angle A = 115^{\circ}$ then $\angle A$ is obtuse	$p \rightarrow q$	Т
Converse	Exchange the hypothesis and the conclusion	$_{\text{if}} \angle A$ is obtuse then $m \angle A = 115^{\circ}$	$q \rightarrow p$	F
Inverse	Negate both the hypothesis and the conclusion of the conditional	if $m \angle A \neq 115^{\circ}$ then $\angle A$ is not obtuse	$\sim p \rightarrow \sim q$	F
Contrapositive	Negate both the hypothesis and the conclusion of the converse	if A is not obtu then $m \angle A \neq 115^{\circ}$	$\sim q \rightarrow \sim p$	Т

Indirect Proof

Step 1:

State as a temporary assumption which is the opposite (negation) of what you want to prove.

Step 2:

Show that this assumption leads to a contradiction

 $x \neq 3 \rightarrow x^2 \neq 9$

Step 3:

Conclude that the temporary assumption must be false and that what you want to prove is true

9.9	Use the indirect proof to show that the following		
	statement is true: If $2x < 18$ then $x < 9$		
	A $x \le 9$	B <i>x</i> ≥ 9	
	c <i>x</i> < 9	$\mathbf{D} \ x > 9$	
_	The conclusion is $x < 9$		
	The assumption is the negation is $x \ge 9 > B$		

Proofs Using Coordinate Geometry

You will use coordinate with variables to write a coordinate proof

- You can prove geometric relationships using variables coordinates for figures in the coordinate plane.
- All points that lies on the same horizontal line have the same y-coordinate.
- 9.10 Find the coordinates of the point *C* if the coordinates of the point *A* are (0, 5) and the coordinates of the point *B* are (8, 0)
 A (8,5)
 B (5,8)
 - Since A and C are on the same horizontal line then they have the same y-coordinate $\rightarrow 5$

D (0,8)

C(5,0)

Since B and C are on the same vertical line then they have the x-coordinate→8
 C (8,5)

By graphing the triangle on the coordinate grid then y axis is an axis of symmetry the point C is reflection of A across

• Since *D* and *C* are on the same horizontal line $\rightarrow y = a$

• The *x* coordinate of point *B* is b The *x* coordinate of point *E* is b + c

 $(b+c,a) \gg \mathbf{C}$