CHAPTER (7) TRANSFORMATION

- In a transformation the original figure is the **preimage**. The resulting figure is the **image**.
- An **isometry** is a transformation in which the preimage and image are congruent.
- A transformation of geometric figure is a change in the position (**translation**), flipping (**reflection**), turning (**rotation**), or size (**dilation**).

(1) Translation

(1) Translation is transformation that maps all points of a figure the same distance in the same direction

 $P(x, y) \longrightarrow P'(x+h, y+v)$

where h is the horizontal shift and v is vertical shift

Example

What is the image of the point P(2,1) for the translation?

$$(x, y) \longrightarrow (x-2, y-5)$$
$$P(2,1) \longrightarrow P'(2-2, 1-5) \longrightarrow P'(0,-4)$$

Three units to the right $\longrightarrow x+3$ Four units down $\longrightarrow y-4$

$$(x, y) \longrightarrow (x+3, y-4)$$

(6+3, 2-4)
(9,-2) \Box A

2.	What is a rule that des the translation? $P(-3, -3)$	cribes (4) to $P'(5,2)$
	A $(x-8, y+2)$	B $(x+2, y-8)$
	c $(x-2, y+8)$	D $(x+8, y-2)$

Horizontal Change: -3 + h = 5

$$x' = x + h$$
$$x' = x + 8$$

h = +8

Vertical change: 4 + v = 2

$$v = -2$$

$$y' = y + v$$

$$y' = y - 2$$

$$P(x, y) \longrightarrow P'(x+8, y-2)$$

► D

(2) Reflection

If a point *A* is on the line *r*, then the image of *A* is itself (A' = A)

If a point *B* is not on line *r*, then *r* is the perpendicular bisector of BB'

Point	Axis of reflection	image
(a,b) (a,b) (a,b)	x - axis $y = x$ $y - axis$	$ \begin{array}{c} (a,-b) \\ (b,a) \\ (-a,b) \end{array} $

The point D is on the of reflection line then the image of D is itself $D = D' \implies \mathbf{B}$

61

(3) Rotation

The rotation is applied counterclockwise unless it was mentioned clockwise

The rotation about the origin

Point <i>A</i>	Angle of rotation	Image A '
(a,b)	90°	(-b,a)
(a,b)	180^{o}	(-a,-b)
(a,b)	270°	(b, -a)
(a,b)	360°	(a,b)

Rotation of Regular Polygons

C 270°

 $(-2,-4) \longrightarrow (2,4)$

A 90°

You can find of the rotation of a regular polygon (that has *n* sides) about its center by $\frac{360}{n}$

 $(a,b) \xrightarrow{\text{Rotation 80°}} (-a,-b) \Longrightarrow \mathbf{B}$

Example:

Find the angle of rotation of a hexagon about its center

B 180°

D 360°

Solution: hexagon has 6 sides

Angle of rotation
$$=\frac{360}{n}$$

= 60°

The image of the dilation is similar to the preimage, not congruent

Scale factor n:	n > 1	0 < n < 1	<i>n</i> = 1
Dilation is	Enlargement	Reduction	Congruent (no dilation)

 The dilation image of a point P(x, y) is found by multiplying the coordinates of P by the scale factor P(x y) → Dilation (n) factor → (nx, ny)

$$n = \frac{A'B'}{AB}$$
$$= \frac{4}{6}$$
$$= \frac{2}{3} \gg A$$

7.16 $A'B'$ is dilation image of AB . Find AB if the dilation			
5	scale factor is $n = \frac{1}{4}$, and $A'B' = 12$		
I	A 3	в 48	
	c 24	D 12	
$n = \frac{A'B'}{AB}$			
	$\frac{1}{4} = \frac{12}{4R}$		
	$\begin{array}{c} 4 \\ AB \\ AB \\ = 4 \times 12 \end{array}$		
		= 48 B	

C' = C

Z $CZ' = n \times CZ$

In **Dilation** the image and the preimage are not congruent.