Part 1: Introduction to Acids and Bases Properties of Acids and Bases - Acids taste sour. Bases taste bitter and feel slippery. - Acids and bases are conductors of electricity. - Acids and bases can be identified by their reactions with some metals and metal carbonates. - Acids turn blue litmus red. - Bases turn red litmus blue. •All water solutions contain hydrogen ions (H⁺) and hydroxide ions (OH⁻). - An acidic solution contains more hydrogen ions than hydroxide ions. • A basic solution contains more hydroxide ions than hydrogen ions. •The usual solvent for acids and bases is water-water produces equal numbers of hydrogen and hydroxide ions in a process called self-ionization. $H_2O(1) + H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$ • The Arrhenius model states that an acid is a substance that contains hydrogen and ionizes to produce hydrogen ions in an aqueous solution, and a base is a substance that contains a hydroxide group and dissociates to produce a hydroxide ion in solution. •Arrhenius acids and bases: HCl ionizes to produce H⁺ ions. $HCl(g) \rightarrow H^+(aq) + Cl^-(aq)$ NaOH dissociates to produce OH⁻ ions. NaOH(s) \rightarrow Na+(aq) + OH⁻(aq) • The Brønsted-Lowry Model of acids and bases states that an acid is a hydrogen ion donor, and a base is a hydrogen ion acceptor. Brønsted-Lowry Model is a more inclusive model of acids and bases. • A conjugate acid is the species produced when a base accepts a hydrogen ion. • A conjugate base is the species produced when an acid donates a hydrogen ion. • A conjugate acid-base pair consists of two substances related to each other by donating and accepting a single hydrogen ion. - $HF(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + F^-(aq)$ HF = acid, H_2O = base, H_3O^+ = conjugate acid, F^- = conjugate base - $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$ $NH_3 = base, H_2O(l) = acid, NH_4^+ = conjugate acid, OH^- = conjugate base$ •Water and other substances that can act as acids or bases are called amphoteric. The Lewis Model •According to the Lewis model, a Lewis acid is an electron-pair acceptor and a Lewis base is an electron-pair donor. • The Lewis model includes all the substances classified as Brønsted-Lowry acids and bases and many more. Three Models For Acids and Bases Model Acid Definition **Base Definition** OH- producer Arrhenius H+ producer Brønsted-Lowry H+ donor H+ acceptor electron-pair donor Lewis electron-pair acceptor 1 Tastes bitter... A neutral solution contains two equal 6 CH A Acidic solution **B** Basic solution concentrations of hydronium ions and ... **B** O²⁻ CH A Cl **13 C** Neutral solution **D** Amphoteric solutions 13 C NH₄⁺ D OH-Bases taste bitter →B A neutral solution contains equal concentrations of H₃O⁺ ions and OH⁻. →D Acidic solutions ... 2 CH A Tastes bitter In an acidic solution: concentration of 13 **B** Has slippery texture hydrogen ions are hydroxide. **C** Doesn't conduct electricity **CH A** Not related to **B** Equals to **D** Conducts electricity **13** C Less than **D** Greater than Acids and bases are conductors of electricity. →D An acidic solution contains more hydrogen ions than hydroxide ions. →D 3 Acidic solutions turn the color of litmus paper from... 8 Ionization of pure water results in a number of **CH** A Blue to red **B** Blue to green OH⁻ and H⁺ ions in which... 13 **C** Blue to yellow **D** Red to blue CH A Their amounts are equal Acids turn blue litmus red →A 13 **B** Number of OH⁻ ions is more **C** Number of H^+ ions is more 4 Basic solutions turn the color of litmus paper **D** Number of H⁺ ions is too little from... Ionization of pure water results in a number CH A Blue to red **B** Red to yellow of OH- and H+ ions in which their amounts are 13 **C** Red to green **D** Red to blue

→D

→D

Bases turn red litmus blue.

KOH, Bases turn red litmus blue.

A substance that turns red litmus paper to blue

B HCOOH

D KOH

5

13

CH A NaCl

C HF

- →A
- 9 Arrhenius Acid is a substance that produce and contains..... ions.
 CH A Nitrogen B Hydrogen
 13 C Oxygen D Fluorine Arrhenius Acid is a substance that produce and contains hydrogen ions. →B

equal

CHAPTER 13: Acids and Bases

10 Arrhenius Base is a substance that produce and contains ions. CH A Sodium B Hydrogen 13 C Hydroxide D Bromine Arrhenius base is a substance that produce and contains hydroxide ions. → 11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic behavior for some bases like NH ₃ , N ₂ H ₄ , CH ₃ NH ₂ . →	•C →C
contains ions. C ontains ions. CH A Sodium B Hydrogen 13 C Hydroxide D Bromine Arrhenius base is a substance that produce and contains hydroxide ions. →0 11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
CH A Sodium B Hydrogen 13 C Hydroxide D Bromine Arrhenius base is a substance that produce and contains hydroxide ions. →(11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
13 C Hydroxide D Bromine Arrhenius base is a substance that produce and contains hydroxide ions. →(11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
Arrhenius base is a substance that produce and contains hydroxide ions. 11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
Arrhenius base is a substance that produce and contains hydroxide ions. →0 11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
hydroxide ions. →(11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
11 Which of the following compounds does not follow Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	
Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	≻ C
Arrhenius model in the definition of bases? CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	≻C
CH1 A NaOH B KOH 3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	≻C
3 C NH ₃ D Mg(OH) ₂ Arrhenius model didn't give explanations about the basic	≻C
Arrhenius model didn't give explanations about the basic	≻ C
	≻C
behavior for some bases like NH ₃ , N ₂ H ₄ , CH ₃ NH ₂ . \rightarrow	≻C
12 Which of the following substance that is a hydrogen	t I
ion donor according to Bronsted-Lowry model	
CH A Base B Neutral substance	
13 C Acid D Table salt	
C Acid D Table Sait	
Brønsted-Lowry Model of acids and bases states	
that an acid is a hydrogen ion donor \rightarrow	·C
13 Which of the following substance that is a hydrogen	l
ion acceptor according to Bronsted-Lowry model	
CH A Base B Neutral substance	
13 C Acid D Tale salt	
C Acid D Tale Sait	
Brønsted-Lowry Model of acids and bases states	
that a base is a hydrogen ion acceptor $\rightarrow A$	
P	A
14 In an acidic solution	A
CH A $[H_3O^+] = 10^{-9}$ B $[H_3O^+] = 10^{-14}$	A
10	A
¹³ C $[OH^-] < [H_3O^+]$ D $[OH^-] > [H_3O^+]$	A
In an acidic solution $[OH^-] < [H^+]$	A
	≻A →C
15 If $[H_3O^+] < [OH^-]$ then the solution is	
CH A Acidic B Neutral	
CHAAcidicBNeutral13CBasicDAmphoteric	≻C
CHAAcidicBNeutral13CBasicDAmphoteric	
CHAAcidicBNeutral13CBasicDAmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow	≻C
CHA AcidicBNeutral13CBasicDAmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution is	≻C
CHA AcidicBNeutral13CBasicDAmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow	≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral	≻C
CHA AcidicBNeutral13CBasicDAmphoteric13CBasic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHAAcidicB13CBasicDAmphoteric) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution is) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric14If $[H_3O^+] > 1x10^{-7}$ M, the solution is15If A AcidicB Neutral) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric14If C BasicD Amphoteric15If (Hardic)A Acidic16If (Hardic)B Neutral17C BasicD Amphoteric	→C →C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric14If C BasicD Amphoteric) ≻C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric14If C BasicD Amphoteric15If (H_3O^+) > 1x10^{-7} M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric	→C →C
CHA AcidicB Neutral13C BasicD Amphoteric14IImage: Control of the second control of the seco	→C →C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericI13C BasicD AmphotericI14In an acidic solution $[H_3O^+] > 1x10^{-7}$ M17If $[H_3O^+] < 1x10^{-7}$ M, the solution is	→C →C
CHA AcidicB Neutral13C BasicD Amphoteric14In a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral	→C →C
CHA AcidicB Neutral13C BasicD AmphotericI13C Basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericI13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral	→C →C
CHA AcidicB Neutral13C BasicD AmphotericI13C Basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric14In AcidicB Neutral15C BasicD Amphoteric17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric	→C →C →B →A
CHA AcidicB Neutral13C BasicD Amphoteric14II a basic solution $[H_3O^+] < [OH^-]$ I mathemathemathemathemathemathemathemathe	→C →C
CHA AcidicB Neutral13C BasicD AmphotericI13C Basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow	→C →C →B →A
CHA AcidicB Neutral13C BasicD AmphotericI13C Basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric14In AcidicB Neutral15C BasicD Amphoteric17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD Amphoteric	→C →C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution is	→C →C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral12If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral	→C →C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow	→C →C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow	→C →C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow	→C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow	→C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[OH^-] < 1x10^{-7}$ M \rightarrow 19If $[OH^-] > 1x10^{-7}$ M, the solution is	→C →B →A
CHA AcidicBNeutral13CBasicDAmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHAAcidicB13CBasicDAmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution is \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHAAcidicBNeutral13CBasicDIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHAAcidicB13CBasicDI7If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHAAcidicB13CBasicD14If $[OH^-] < 1x10^{-7}$ M, the solution isCHAAcidicB13CBasicD14If $[OH^-] < 1x10^{-7}$ M, the solution isCHAAcidicB15If $[OH^-] > 1x10^{-7}$ M, the solution is16If $[OH^-] > 1x10^{-7}$ M, the solution isCHAAcidicB17If $[OH^-] > 1x10^{-7}$ M, the solution isCHAAcidicB14AcidicB15If $[OH^-] > 1x10^{-7}$ M, the solution is16If $[OH^-] > 1x10^{-7}$ M, the solution is17If $[OH^$	→C →B →A
CHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHA AcidicB Neutral13C BasicD AmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn a basic solution $[H_3O^+] < 1x10^{-7}$ M \rightarrow 18If $[OH^-] < 1x10^{-7}$ M, the solution isCHA AcidicB Neutral13C BasicD AmphotericIn an acidic solution $[OH^-] < 1x10^{-7}$ M \rightarrow 19If $[OH^-] > 1x10^{-7}$ M, the solution is	→C →B →A
CHA AcidicBNeutral13CBasicDAmphotericIn a basic solution $[H_3O^+] < [OH^-]$ \rightarrow 15If $[H_3O^+] = [OH^-]$ then the solution isCHAAcidicB13CBasicDAmphotericIn neutral solution $[H^+] = [OH^-]$ \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution is \rightarrow 16If $[H_3O^+] > 1x10^{-7}$ M, the solution isCHAAcidicBNeutral13CBasicDIn an acidic solution $[H_3O^+] > 1x10^{-7}$ M \rightarrow 17If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHAAcidicB13CBasicDI7If $[H_3O^+] < 1x10^{-7}$ M, the solution isCHAAcidicB13CBasicD14If $[OH^-] < 1x10^{-7}$ M, the solution isCHAAcidicB13CBasicD14If $[OH^-] < 1x10^{-7}$ M, the solution isCHAAcidicB15If $[OH^-] > 1x10^{-7}$ M, the solution is16If $[OH^-] > 1x10^{-7}$ M, the solution isCHAAcidicB17If $[OH^-] > 1x10^{-7}$ M, the solution isCHAAcidicB14AcidicB15If $[OH^-] > 1x10^{-7}$ M, the solution is16If $[OH^-] > 1x10^{-7}$ M, the solution is17If $[OH^$	$\rightarrow C$ $\rightarrow B$ $\rightarrow A$ $\rightarrow C$

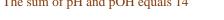
20	The conjugate base of HCl is				
CH	A H_3O^+ B OH- C Cl ⁻ D H_2Cl^+				
13	Conjugate base = $Acid - H^+$				
	$HCI - H^+ = CI^- \qquad \Rightarrow C$				
21	The conjugate acid of NH ₃ is				
СН	$\mathbf{A} \ \mathbf{H}_{3}\mathbf{O}^{+} \qquad \mathbf{B} \ \mathbf{O}\mathbf{H}^{-} \qquad \mathbf{C} \ \mathbf{N}\mathbf{H}_{2}^{-} \qquad \mathbf{D} \ \mathbf{N}\mathbf{H}_{4}^{+}$				
13	Conjugate acid = Base + H^+				
	$NH_3 + H^+ = NH_4^+$				
22	The conjugate acid of HSO4 ⁻ is				
CH	$\mathbf{A} \ \mathbf{H}_3 \mathbf{O}^+ \qquad \mathbf{B} \ \mathbf{H}_2 \mathbf{SO}_4 \qquad \mathbf{C} \ \mathbf{H}_2 \mathbf{SO}_3 \qquad \mathbf{D} \ \mathbf{SO}_4^{}$				
13	Conjugane aero Dase (11				
	$HSO_4^- + H^+ = H_2SO_4 \qquad \qquad \Rightarrow B$				
23	Which of the following is amphoteric				
CH					
13	A H_3O^+ B H_2SO_4 C H_2SO_3 D HSO_4^- Amphoteric can accept H^+ or donate H^+ at the				
15	same time $\rightarrow D$				
24	Which of the following is monoprotic acid				
СН	A H_2CO_3 B H_2SO_4 C H_2SO_3 D HNO_3				
13	Monoprotic acid is an acid that can donate 1 Hydrogen				
	ion only $\rightarrow D$				
05					
25 CU	Which type of acid accepts an electron pair?				
CH 12	A Arrhenius B Brønsted-Lowry				
13	C Lewis D Dalton				
	A Lewis acid is an electron-pair acceptor. $\rightarrow C$				
-					
26	Which of the following represents a Lewis acid?				
	which of the following represents a Dewis actu.				
СН	A F B NH ₃				
CH 13					
-	$\mathbf{A} \mathbf{F}^{-} \mathbf{B} \mathbf{N} \mathbf{H}_{3}$				
-	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration				
-	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in				
13	A F^- B NH_3 C BH_3 D OH^- BH_3, Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. $\rightarrow C$				
-	A F^- B NH_3 C BH_3 D OH^- BH_3, Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. $\rightarrow C$ What is the concentration of [OH ⁻], if the				
13	AFBNH3CBH3DOH ⁻ BH3, Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow CWhat is the concentration of [OH ⁻], if the concentration of [H3O ⁺] is 1x10 ⁻³ M.				
13 27	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C)				
13 27 CH	AFBNH3CBH3DOH ⁻ BH3, Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow CWhat is the concentration of [OH ⁻], if the concentration of [H3O ⁺] is 1x10 ⁻³ M. (Kw=1x10 ⁻¹⁴ at 25°C)B1x10 ⁻³ MA1x10 ⁻³ MB1x10 ³ M				
13 27	AFBNH3CBH3DOH ⁻ BH3, Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow CWhat is the concentration of [OH ⁻], if the concentration of [H3O ⁺] is 1x10 ⁻³ M. (Kw=1x10 ⁻¹⁴ at 25°C)B1x10 ⁻³ MA1x10 ⁻³ MB1x10 ³ MC1x10 ⁻¹¹ MD1x10 ¹¹ M				
13 27 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ⁰ C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻]				
13 27 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻]				
13 27 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ⁰ C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻]= 1x10 ⁻¹⁴ ÷ 1x10 ⁻³				
13 27 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³				
13 27 CH 13	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹¹ M →C				
13 27 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w = [H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ = [H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ m →C				
13 27 CH 13	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ m →C What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M.				
13 27 CH 13	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w = [H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ = [H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ m →C				
13 27 CH 13 28	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ↔ 1x10 ⁻³ M What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M				
13 27 CH 13 28 CH	AFBNH3CBH3DOH ⁻ BH3, Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons.→CWhat is the concentration of [OH ⁻], if the concentration of [H3O ⁺] is 1x10 ⁻³ M. (Kw=1x10 ⁻¹⁴ at 25°C)→CA1x10 ⁻³ MB1x10 ³ MC1x10 ⁻¹⁴ MD1x10 ¹¹ MKw = [H3O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ + ∞→CWhat is the concentration of [H3O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25°C)What is the concentration of [H3O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25°C)A1x10 ⁻³ MBA1x10 ⁻⁹ MD1x10 ⁹ M				
13 27 CH 13 28 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 0 What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻]				
13 27 CH 13 28 CH	A F [·] B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 0 What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻]				
13 27 CH 13 28 CH	A F ⁻ B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 0 What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻]				
13 27 CH 13 28 CH	A F [·] B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ dt 25 ^o C) A 1x10 ⁻³ M B 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵				
13 27 CH 13 28 CH 13	A F [•] B NH ₃ C BH ₃ D OH [−] BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. \rightarrow C What is the concentration of [OH [−]], if the concentration of [H ₃ O ⁺] is 1x10 ^{−3} M. (K _w =1x10 ^{−14} at 25 ^o C) A 1x10 ^{−3} M B 1x10 ³ M C 1x10 ^{−11} M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH [−]] 1x10 ^{−14} =[H ₃ O ⁺] x[OH [−]] [OH [−]] = 1x10 ^{−14} \div 1x10 ^{−3} [OH [−]] = 1x10 ^{−14} \div 1x10 ^{−3} [OH [−]] = 1x10 ^{−14} at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻¹⁴ at 25 ^o C) B 1x				
13 27 CH 13 28 CH 13 29	A F [·] B NH ₃ C BH ₃ D OH [·] BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻⁹ M →C				
13 27 CH 13 28 CH 13 29 CH	A F [·] B NH ₃ C BH ₃ D OH [·] BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M →C What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M → D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵				
13 27 CH 13 28 CH 13 29	A F [·] B NH ₃ C BH ₃ D OH ⁻ BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ + 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M B 1x10 ³ M C 1x10 ⁻⁹ M B 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻⁹ M →C				
13 27 CH 13 28 CH 13 29 CH	A F [·] B NH ₃ C BH ₃ D OH [·] BH ₃ , Because Boron B have an empty p orbital in the outer most shell of its electron configuration and can accept a pair of electrons. →C What is the concentration of [OH ⁻], if the concentration of [H ₃ O ⁺] is 1x10 ⁻³ M. (K _w =1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻¹¹ M D 1x10 ¹¹ M K _w =[H ₃ O ⁺] x[OH ⁻] [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻³ [OH ⁻] = 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M →C What is the concentration of [H ₃ O ⁺], if the concentration of [OH ⁻] is 1x10 ⁻⁵ M. (Kw=1x10 ⁻¹⁴ at 25 ^o C) A 1x10 ⁻³ M B 1x10 ³ M C 1x10 ⁻⁹ M → D 1x10 ⁹ M K _w =[H ₃ O ⁺] x[OH ⁻] 1x10 ⁻¹⁴ =[H ₃ O ⁺] x[OH ⁻] [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵ [H ₃ O ⁺] = 1x10 ⁻¹⁴ ÷ 1x10 ⁻⁵				

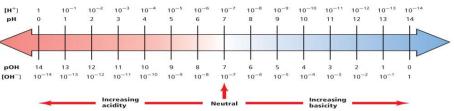
2

CHAPTER 13: Acids and Bases

Part 2: Strengths of Acids and Bases, pH, and Neutralization

Acids that ionize completely are **strong acids**, because they produce the maximum number of hydrogen ions, strong acids are good conductors of electricity. Acids that ionize only partially in dilute aqueous solutions are called **weak acids**


Strong Acids		Weak Acids	
Name	Ionization Equation	Name	Ionization Equations
Hydrochloric	$HCI \rightarrow H^{+} + CI^{-}$	Hydrofluoric	$HF = H^+ + F^-$
Hydroiodic	$\mathrm{HI} \to \mathrm{H^+} + \mathrm{I^-}$	Hydrosulfuric	$H_2S \rightleftharpoons H^+ + HS^-$
Nitric	$HNO_3 \rightarrow H^+ + NO_3^-$	Carbonic	H ₂ CO ₃ volt H ⁺ + HCO ₃ ⁻
Sulfuric	$H_2SO_4 \rightarrow H^+ + HSO_4^-$	Hypochlorous	HCIO == H+ + CIO-


With a strong acid, the conjugate base is a weak base. The acid ionization constant is the value of the equilibrium constant expression for the ionization of a weak acid, K_a . Weaker acids have a smaller K_a

A base that dissociates completely into metal ions and hydroxide ions is known as **a strong base**. A weak base ionizes only partially in dilute aqueous solution. The base ionization constant, K_b , is the value of the equilibrium

constant expression for the ionization of a base. Weaker base have a smaller $\ensuremath{K_b}$

pH is the negative logarithm of the hydrogen ion concentration of a solution. **pH** = $-\log [H_3O^+]$ **pOH** of a solution is the negative logarithm of the hydroxide ion concentration. **pOH** = $-\log [OH^-]$ The sum of pH and pOH equals 14

A <u>neutralization reaction</u> is a reaction in which an acid and a base in an aqueous solution react to produce a salt and water. Neutralization is a double-replacement reaction.

A salt is an ionic compound made up of a cation from a base and an anion from an acid.

Titration is a method for determining the concentration of a solution by reacting a known volume of that solution with a solution of known concentration.

<u>Equivalence point</u>, which is the point at which moles of H_3O^+ ion from the acid equals moles of OH^- ion from the base. An **end point** is the point at which an indicator used in a titration changes color.

An indicator will change color at the equivalence point.

Buffers are solutions that resist changes in pH when limited amounts of acid or base are added. A buffer is a solution made up of a weak species and its conjugate.

30	······································		
~~~	equation for a strong acid?		
CH	6		
13			
	The equilibrium point in the ionization equation for		
	a strong acid is far right. $\rightarrow A$		
31			
-	A Weak acidB Weak base		
13	e strong und <b>D</b> strong buse		
	A solution with a small $K_a$ is a weak acid $\rightarrow A$		
32	A solution with a small K _b is a		
CH	A Weak acid B Weak base		
13	C Strong acid D Strong base		
	The base ionization constant is the value of the		
	equilibrium constant expression for the ionization		
	of a weak base, $K_b$ . $\rightarrow B$		
33	What is the conjugate of a weak acid?		
СН	A Strong acid B Strong base		
13	C Weak acid D Weak base		
	A weak acid, the conjugate base is		
	a strong base $\rightarrow B$		

34	The strength of a weak acid is measured by			
СН	A Ion product constant			
13	<b>B</b> Base ionization constant			
	С рОН			
	<b>D</b> Acid ionization constant			
	The base ionization constant is the value of the			
	equilibrium constant expression for the ionization			
	of a weak acid, $K_a$ .			
35	······································			
GTT	following is true?			
CH				
13	<b>C</b> $[H_3O^+] = [OH^-]$ <b>D</b> None of the above			
	$pH = 4$ , acidic solution so $[H_3O^+] > [OH^-]$ $\rightarrow A$			
36	- · · · · · · · · · · · · · · · · · · ·			
СН	following is true? A $[U \cap t] > [O \cup t]$			
13	E PER A E PER A			
15	<b>C</b> $[H_3O^+] = [OH^-]$ <b>D</b> None of the above			
	pH = 10, basic solution so $[H_3O^+] < [OH^-] \rightarrow B$			
37	In a solution with a pH of 7.0, which of the			
GTT	following is true?			
CH				
13	<b>C</b> $[H_3O^+] = [OH^-]$ <b>D</b> None of the above			
	$pH = 7$ , neutral solution so $[H_3O^+] = [OH^-] \rightarrow C$			

3

# **CHAPTER 13: Acids and Bases**

38 If [H ₃ O ⁺ ] of a solution with 0.001M, pH is         CH A -3 B 3 C -11 D 11         13 $pH = -log [H_3O^+]$ $pH = -log [H_3O^+]$ $pH = -log [X10^{-3}]$ $pH = 3$ $\rightarrow B$ 39 If pH=5 of a solution, [H ₃ O ⁺ ] is         CH A $1x10^5M$ B $1x10^5M$ C $1x10^9M$ D $1x10^9M$ $13 [H_3O^+] = 10^{-pH}$ $H_3O^+] = 10^{-pH}$ $H_3O^+] = 10^{-5M}$ $\rightarrow B$ 40 If [OH] of a solution with 0.001M, pOH is         CH 11	48       What is the pOH of 0.005M Ca(OH) ₂ , a strong base?         CH       A -2       B 2       C -5       D 5         13 $[OH^-] = 2 x [Ca(OH)_2] = 1x10^{-2}M$ pOH = $-log [OH^-]$ pOH = $-log 1x10^{-2}$ pOH = 2 $\rightarrow$ B         49       What is the pH of 0.0005M Ca(OH) ₂ , a strong base?         CH       A -11       B 11       C -3       D 3         13 $[OH^-] = 2 x [Ca(OH)_2] = 1x10^{-3}M$ pOH = $-log [OH^-]$
CH A -3 B 3 C -11 D 11 13 pOH = $-\log [OH^{-}]$ pOH = $-\log 1x10^{-3}$ pOH = 3 →B 41 If [OH ⁻ ] of a solution with 0.0001M, pH is CH A -4 B 4 C -10 D 10 13 pOH = $-\log [OH^{-}]$ pOH = $-\log [OH^{-}]$ pOH = $-\log 1x10^{-4}$ pOH = 4 pH = 14 - pOH = 14 - 4 = 10 →D	pOH = $-\log 1 \times 10^{-2}$ pOH = 3 pH = 14 - pOH = 14 - 3 = 11 $\rightarrow$ B 50 A reaction in which an acid and a base in an aqueous solution react to produce a salt and water. CH A Combustion B Fertilization 13 C Neutralization D Decomposition A neutralization reaction is a reaction in which an acid and a base in an aqueous solution react to produce a salt and water. $\rightarrow$ C
42 If pOH=4 of a solution, [OH ⁻ ] is CH A $1x10^{4}M$ B $1x10^{-4}M$ C $1x10^{-10}M$ D $1x10^{10}M$ 13 [OH ⁻ ] = $10^{-pOH}$ [OH ⁻ ] = $10^{-4}M$ →B	51       A neutralization reaction is         CH       A Combustion       B Single-replacement         13       C Double-replacement       D Decomposition         Neutralization reaction is a double-replacement
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<ul> <li>52 A method for determining the concentration of a solution by reacting a known volume of that solution with a solution of known concentration.</li> <li>CH A Combustion B Neutralization</li> </ul>
44       If pH=3 of a solution, pOH is         CH       A 3       B -3       C 11       D -11         13 $pOH = 14 - pH$ =       14 - 3 = 11 $\rightarrow C$	13CTitrationDDecompositionTitration is a method for determining the concentration of a solution by reacting a known volume of that solution with a solution of known concentration. $\rightarrow$ C
45 What is the pH of 0.01M HCl, a strong acid? CH A -2 B 2 C 10 D -10 13 $[H_3O^+] = [HCl] = 10^{-2}M$ pH = -log $[H_3O^+]$ pH = 2 →B 46 What is the pH of 0.05M H ₂ SO ₄ , a strong acid?	<ul> <li>53 The point at which moles of H₃O⁺ion from the acid equals moles of OH⁻ ion from the base.</li> <li>CH A Stating point B Reference point</li> <li>13 C Equivalence point D Negative point Equivalence point, which is the point at which moles of H₃O⁺ion from the acid equals moles of OH⁻ ion from the base. →C</li> </ul>
CH A -1 B 1 C 5 D -5 13 $[H_3O^+] = 2x[H_2SO_4] = 0.1M$ $pH = -log [H_3O^+]$ $pH = -log 1x10^{-1}$ $pH = 1$ $\rightarrow B$	<ul> <li>54 The point at which an indicator used in a titration changes color.</li> <li>CH1 A Stating point B Reference point</li> <li>3 C Equivalence point D End point End point is the point at which an indicator used in a titration changes color. →D</li> </ul>
47 What is the pOH of 0.001M NaOH, a strong base? CH A -3 B 3 C -11 D 11 13 [NaOH] = [OH ⁻ ] = 1x10 ⁻³ M pOH = -log [OH ⁻ ] pOH = -log 1x10 ⁻³ pOH = 3 →B	<ul> <li>55 Solutions that resist changes in pH when limited amounts of acid or base are added.</li> <li>CH A Receptors B Donors</li> <li>13 C Quakers D Buffers</li> <li>Buffers are solutions that resist changes in pH when limited amounts of acid or base are added. →D</li> </ul>

4