CHAPTER (3) SEQUENCE AND SERIES

00001

000

00

.

00

6

100

1-Sequences

A sequence is a set of number that are in order. Each number in the sequence is called a term.

A-Arithmetic sequence *YASq\$*

In an arithmetic sequence the difference between one term and the next term is constant and denoted by $\partial d \partial$. In other words, we just add the same value each time.

Example

1, 4, 7, 10, 13...

This sequence has a difference d = 3 between each two terms. The pattern is continued by adding 3 to the last number each time

 $1 \underbrace{4}_{+3} \underbrace{7}_{+3} \underbrace{10}_{+3} \underbrace{13}_{+3} \dots n^{\text{th}} \text{ term}$

To find the nth term in the *ASq* we can use the rule $a_n = a_1 + d(n-1)$ where a_n ' is 'nth' term, 'a_1' is the first term 'n' is the number of term and 'd' is the difference

Arithmetic Mean

The arithmetic means are the terms between two non-consecutive terms for example in the ASq 4,9,14,19,24, the terms 9,14,19 are three arithmetic means between 4 and 24.

On the other hand if (a,b,c) are three consecutive terms in a ASq, then the arithmetic mean: $b = \frac{a+c}{2}$

A 104 C 92

В	108
D	90

The increment of share through the 3 months is 92 - 80 = 12

To find the incremen in each month we divide $\frac{12}{3} = 4$

4

$$n = 7$$
 $d = 4$ $a_1 = 80$
 $a_7 = a_1 + (n-1)d$
 $= 80 + (7-1) \cdot 4$
 $= 80 + 24$
 $= 104$

5. Find the common difference in the ASq if $a_9 = -12$, $a_1 = 20$ A -6 B 6 C 4 D -4 $a_9 = -12$ $a_1 = 20$ n = 9 d = ? $a_n = a_1 + (n-1)d$ -12 = 20 + (9-1)d -12 = 20 + 8d -32 = 8d d = -4D

B- Geometric Sequence (*GSq*)

In a geometric sequence each term is found by multiplying the previous term by a constant called common ratio and denoted by r.

Example

1, 2, 4, 8, 16, ...

This sequence has a common ratio r = 2 between each two terms. In other words, each term is found by multiplying the previous term by 2.

 $1 \underbrace{\begin{array}{c} 2 \\ \times 2 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 4 \\ \times 2 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 8 \\ \times 2 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 \\ \times 2 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 }_{\times 2} \underbrace{\begin{array}{c} 16 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 \end{array}}_{\times 2} \underbrace{\begin{array}{c} 16 } \underbrace{\begin{array}{c} 16 \end{array}}_{\times 2} \underbrace$

To find the n^{th} term in the GSq we use the rule $a_n = ar^{n-1}$ where a_n is the n^{th} term a_1 is the first term. \hbar is the number of terms and r is the common ratio.

Geometric Mean

The geometric mean are terms between two non-consecutive terms for example in the GSq -2, 4, -8, 16, -32 the terms 4, -8, 16 are three geometric means between -2, and -32. On the other hand if ya, b, c are three consecutive terms in a GSq then the geometric mean is $\sqrt{a \ c}$

>> B

he geometric sequence has a common ratio by dividing

$$\frac{a_2}{a_1} = r \quad \frac{a^4}{a^2} = a^2, \ \frac{a^6}{a^4} = a^2, \ \frac{a^8}{a^6} = a^2$$

2- Series

The sum of sequence term is called series.

A- Arithmetic Series (*ASr*)

For a finite *ASr* that has *n* terms, the first term is a_1 and last term is a_n , we can find the sum of series *Sn* by the rule:

$$S_n = \frac{n}{2}(a_1 + a_n)$$

Example

Find the sum of the first 10 terms of the ASr 7+9+11+...

This sequence has a difference d = 3 between each two terms. The pattern is continued by adding 3 to the last number each time

$$a_{1} = 7 \qquad a_{10} = a_{1} + (n-1)d \qquad S_{10} = \frac{n}{2}(a)$$

$$n = 10 \qquad = 7 + (10-1)2 \qquad = \frac{10}{2}(7+1)$$

Note that we can also use this rule: $S_n = \frac{n}{2} [2a_1 + (n-1)d]$ Sigma Notation Σ

n is upper limit $\sum_{k=a}^{n} f(k)$ is lower limit Q is first value

- The number of terms in the series is found by: n-a+1
- $a_1 = f(firstTerm) = f(a)$
- $a_n = f(lastTerm) = f(n)$
- If f(k) is a linear equation (first degree) then the $\sum_{k=a}^{n} f(k)$ is an AS_r and its common difference d is the coefficient of k

Example

Example Find the common difference and the number of terms of the $AS_r \sum_{k=5}^{20} (7k+3)$ The number of terms:

n-a+1

20 - 5 + 1 = 16

Common difference *d* is the coefficient of $k \to 7$

16. Find the sum of the	$AS_r \sum_{k=1}^{10} (4k-2)$	17. Find the sum of the $AS_r \sum_{k=5}^{20} (2k-1)$
A 220	B 180	A 768 B 384
C 400	D 200	C 720 D 360
$a_1 \rightarrow k = 1$	$a_n \rightarrow k = 10$	$a_1 \rightarrow k = 5$ $a_n \rightarrow k = 20$
$a_1 = 4(1) - 2$	$a_{10} = 4(10) - 2$	$a_1 = 2(5) - 1$ $a_{20} = 2(20) - 1$
= 2	= 38	=9 = 39
Number of terms		Number of terms
= n - a + 1	$S_n = \frac{n}{2}(a_1 + a_n)$	$= n - a + 1$ $S_n = \frac{n}{2}(a_1 + a_n)$
=10-1+1	10	$=20-5+1$ 16 $\frac{2}{10}$
=10	$=\frac{10}{2}(2+38)$	$=16 = \frac{-2}{2}(9+39)$
	= 5(40)	= 8(48) = 384
	= 200	
	≫D	≫B

B- Geometric Series GS_r

For a finite GS_r that has \mathcal{N} terms, the first term is a_1' and the last term is a_n' , we can find the sum of the series S_n' by the rule $S_n = \frac{a_1 - a_1 r^n}{1 - r}$

Example

r =

Find the sum of $GS_r \sum_{k=1}^{20} 3(2)^{k-1}$

2
$$a_1 = 3(2)^{1-1}$$

 $= 3(2)^0$
 $= 3$
 $= \frac{3-3\times 2^{20}}{1-2}$
 $= \frac{3-3\times 2^{20}}{1-2}$
 $= \frac{3(1-2^{20})}{-1}$
 $= -3(1-2^{20})$

 $= \frac{-1}{-1}$ $= -3(1-2^{20})$ **18.** Find the sum $\sum_{n=1}^{11} 4(5)^{k-1}$ **B** $5^{11} - 1$ **C** $4^{10} - 1$ **D** $4^{11} - 1$ $S_n = \frac{a_1 - a_1 r^n}{1 - r}$

$$r = 5$$

$$= 4$$

$$r = 5$$

$$S_{11} = \frac{4 - 4 \times 5^{11}}{1 - 5}$$

$$= \frac{4(1 - 5^{11})}{-4}$$

$$= -(1 - 5^{11})$$

For an infinite $GS_r \mid \mathbf{f} \mid$ could be

- $|r| \ge 1$, the series is diverge and is the sum is infinity ∞
- |r| < 1, the series is **converge** and is the sum could be found by the rule $S = \frac{a_1}{1 - r_1}$

Example

Find the sum
$$\sum_{k=1}^{\infty} (2)^{-k}$$

Solution:

$$\sum_{k=1}^{\infty} (2)^{-k} = \sum_{k=1}^{\infty} (\frac{1}{2})^{k} \qquad r = \frac{1}{2} \qquad a_1 = (\frac{1}{2})^1 = \frac{1}{2}$$

The series is converging

$$S = \frac{a_1}{1 - r_1} = \frac{\frac{1}{2}}{1 - \frac{1}{2}} = 1$$

CHAPTER (3) SEQUENCE AND SERIES

 $\sum_{k=1}^{\infty} \frac{5}{3} (\frac{3}{5})^k$

 $r = \frac{3}{5}$

 $a_1 = \left(\frac{5}{3}\right) \left(\frac{3}{5}\right)^1$

 $=\frac{5}{3}\cdot\frac{3}{5}$

 $S = \frac{1}{1 - \frac{3}{5}}$

 $=\frac{1}{\frac{2}{5}} \rightarrow \frac{5}{2}$

 $a_1 = 1$

 $\mathbb{B} \frac{5}{3}$

 $D \frac{3}{5}$

