

CHAPTER (1)

PHYSICS

Physics in science method

- Physics: is the study of energy, matter and how they are related.
- Note: the equation can be written in many forms to find the missing variables, as shown in the example:

$$T = \frac{V \cdot S}{m^2} \qquad m = \sqrt{\frac{V \cdot S}{T}} \qquad V = \frac{T \cdot m^2}{S} \qquad S = \frac{T \cdot m^2}{V}$$

- Scientific way: A method for answering scientific questions in order to explain natural phenomena, begins with asking questions.
- Hypothesis: A scientific guess about how the variables are related to each other, the validity of the hypothesis can be tested by designing scientific experiments.
- Scientific law: A natural rule that collects related observations to describe a recurring natural phenomenon.
- Scientific theory: A frame that collects all constructed elements of any specific subject in science and can be used to explain observations and notes.

Measurement, precision and accuracy

- Measurement: comparing an unknown quantity with standard quantity.
- Precision: the perfection of measurement.
- The precision of measurement depends on: the tool (device) and the method of measuring.
- Calibration is taken vertically using one eye.
- The precision of device measurement equals the half of the less calibration.
- Accuracy: the adjustment between the measuring results with the accepted value.
- The most common way to test the configuration of a device is "two points calibration".

CHAPTER (1) PHYSICS

- 1. A section of science related to studying matter, energy and the relation between them.
 - A chemistry
- B biology
- physics
- **D** geology
- 2. Which variable equation $T = \frac{V \cdot S}{m^2}$

 - $\mathbf{A} \quad m = \sqrt{\frac{T}{V \bullet S}} \qquad \mathbf{B} \quad m^2 = T \bullet V \bullet S$
- 3. First step of scientific method
 - hypothesis
- law
- asking questions
- conclusion

- 4. Testable explanation
 - A hypothesis
- law
- principle
- theory
- 5. To prove the hypothesis, you need
 - A experiment
- B note
- analysis
- conclusion
- 6. "Energy cannot be created or destroyed " is a:
 - theory
- conclusion
- hypothesis

- 7. An explanation of natural phenomenon based on observations and investigations over time.
 - A scientific theory
- **B** hypothesis
- Conclusion
- scientific low
- 8. The most common way to test the configuration of a device is.
- A Viewing angle
- One points calibration
- Two points calibration
- Device changing

Vector quantity:

A physical quantity that is determined by magnitude and direction, such as displacement, acceleration and force.

Scalar quantity:

A physical quantity that is determined by magnitude only, such as distance, time, mass, temperature, power and pressure.

Basic and derivative units.

The International System of Units (SI):

QUANTITY	symbol	Unit			
Amount of substance	mol	Mole			
Electric current	А	Ampere			
Temperature	K	Kelvin			
Luminous intensity	Cd	Candela			
Length	m	Meter			
Mass	kg	Kilogram			
Time	S	Second			

Derivative Units:

Units that are derived from the basic units, such as Joule (J) and Coulomb (C).

Prefixes of International System.

Prefix Symbol		Decimal Equivalent	Power of 10		
mega-	M	1,000,000	Base x 10 ⁶		
kilo-	k	1,000	Base x 10 ³		
deci-	d	0.1	Base x 10 ⁻¹		
centi-	С	0.01	Base x 10 ⁻²		
milli-	m	0.001	Base x 10 ⁻³		
micro-	μ or mc	0.000 001	Base x 10 ⁻⁶		
nano-	n	0.000 000 001	Base x 10 ⁻⁹		
pico	р	0.000 000 000 001	Base x 10 ⁻¹²		

Example:

Saad listens to broadcasting waves 4.5MHz, so frequency in Hz equals.

- A 4.5×10³
- B 4.5×10^4
- C 4.5×10^6
- D 4.5×10⁹

Answer:

multiple 4.5 by 10^6 , so (c) is the correct answer.

- 9. Which of the following is vector quantity?
 - Car moves with speed of 30 km/h.
- pushing a cart with force of 70 N.
- A swimmer covers a distance of 800 m.
- A marble falls vertically downward with speed of 11 m/s.
- 10. Which of the following is not scalar quantity?

Time

- B Force
- Temperature
- Volume
- 11. The international system of units can be represented by:
- В м

- 12. Which of the following is a unit for a basic quantity in the international system of units?
- A Tesla (T)
- B Volt (V)
- Ampere ((A)
- **O**hm (Ω)

13.	The	SI	unit	of	lena	th	is

- A cm
- Bm
- C km
- D mm

- A Current C Time
- B Potential difference Luminous intensity

14. The area is ----- quantity

- A Basic
- B Original
- Derived
- Neutral
- 15. 6 μm = ----- m
 - A 6×10⁶
- **B** 6×10⁻⁶
- C 6×10⁹
- 6×10⁻⁹

17. Salem has drunk 4 dL of milk, this quantity of milk in liters is:

16. Which of the following is a derived quantity?

- A 4
- **B** 0.4
- 0.004
- 0.0004

1 dL = 10-1 L So, multiply 4 by 10-1 to convert from dL to L 1 dL = 4 x 10-1 = 0.4 L The right answer is B

Question	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Ans	С	D	С	Α	Α	В	Α	С	D	В	Α	С	В	C	В	В	В