

I クモト

Omega Online Academy

Set of Real Numbers

The set of real numbers consist of different categories, such as natural and whole numbers, integers, rational and irrational numbers. In the chart below, all these set of numbers are explained with examples.

A

 Real Numbers Properties

Table of Properties

Let a , b , and c be real numbers, variables, or algebraic expressions. (These are properties you need to know.)

Interval Notation

- The set of all real number is represented by the interval notation: (−∞, ∞).
- You can also use interval notation together with the set union operator to write subsets of the number line made up of more than one interval:

The inequality specifies that the greatest value is 362 but does not equal it, So the answer is one riyal less than 362

Functions

A function is a binary relation between two sets that associates each element of the domain (first set, *x*) to exactly one element of the range (second set, *y*).

One–to–One Functions

A function f is one–to–one if no two elements in the domain of f correspond to the same element in the range of f. In other words, each x in the domain has exactly one Value in the range, and no y in the range is the image of more than one x in the domain.

One-to-One Function

The domain is the elements of the first set that associated to elements in the second set**D**

The domain is the first elements of the ordered pairs **B**

Equations

The equation $y = 3x^2 + 4x$, then *y* is called the dependent variable and *x* is the independent variable. Which means that the value of *y* depends on the value of *x* is. If we are considering functions, then the value of *y* could be represented by a function of *x* value ,So $y = 3x^2 + 4x$ can be written as $f(x) = 3x^2 + 4x$

where x is the input value and $f(x)$ is the output value.

B

Example

If
$$
x
$$
) =
$$
\begin{cases} x^2 + 4x & 1 < x < 3 \\ x + 5 & x \ge 3 \end{cases}
$$

Find **A**

Because 2 is between 1 and 3, then we substitute 2 in the first equation that corresponds the interval $1 \leq x \leq 3$

$$
f(x) = x2 + 4x
$$

f(2) = (2)² + 4(2)
= 12

12. If
$$
f(x) = 2x^2 + 4
$$
, then find $f(x-1)$
\n**A** $x^2 - 2x + 5$
\n**B** $2x^2 - 4x + 6$
\n**C** $2x^2 + 4x + 6$
\n**D** $x^2 + 2x + 5$
\n $f(x) = 2x^2 + 4$
\n $f(x-1) = 2(x-1)^2 + 4$
\n $= 2(x^2 - 2x + 1) + 4$
\n $= 2x^2 - 4x + 2 + 4$
\n $= 2x^2 - 4x + 6$

$$
f(x) = 4x + 2
$$

= 4(0) + 2
= 2

Greatest Integer Function

The symbol $\lfloor x \rfloor$ stands for the integer number less than or equal to X.

Monomials

A monomial is an expression in algebra that contains one term. Monomials include numbers (like 3), variables (like *x*) or a combination of them (like $98b$, mn , $5xy$ or $3x^2y^5$).

Degrees of a Monomial

Some monomials have an exponent. For example, 3 y^2 has an exponent of 2. It also has a degree of 2. In a monomial, you can add the exponents of the variables together to find the degree of a monomial function. The degree for a constant is always 0, and the degree for a variable that doesn't have an exponent listed is always 1

Example

Find the degree of the monomial $3a^2b^5c$ **3** >> degree = 0, a^2 >> degree = 2, b^5 >> degree = 5, $=c^1$ >> degree = 1 The degree of the monomial is $0+2+5+1=8$

 $x^a \times x^b = x^{(a+b)}$

Polynomials

Polynomials are algebraic expressions that consist of variables and coefficients. We can perform arithmetic operations such as addition, subtraction, multiplication and also positive integer exponents for polynomial expressions but not division by variable. Polynomials are named either by its degree or by the number of its terms.

Greatest Common Factor GCF & Least Common Multiple LCM

GCF & LCM of two numbers or more

To find the **GCF** & **LCM** of two numbers or more we can use the Ladder division method, where we keep dividing by common factors till no more common factors

Example

Find GCF and LCM of the following numbers

GCF & LCM of two monomials or more

To find the greatest common factor **(GCF)** of a set of monomials, find the **GCF** of the constants and the **GCF** of each of the variables. After finding these, multiply them all together to get the **GCF** of the set of monomials.

To find the least common multiple **(LCM)** of a set of monomials, find the **LCM** of the constants and the **LCM** of each of the variables. After finding these, multiply them all together to get the **LCM** of the set of monomials.

Example

Find GCF and LCM of the following polynomials

Factoring and multiplying

 $(a - b) = -(b - a)$

Example

 $(x-5) = -(5-x)$

Factoring by GCF

You are advised to use GCF factorization before solving any question to simplify it

Step 1: Determine the greatest common factor GCF of the given terms. **Step 2:** Factor out (divide) the greatest common factor from each term.

Example

Step 2: Divide by GCF

 $3x^{2} \left(\frac{12x^{5}}{3x^{2}} - \frac{18x^{3}}{3x^{2}} - \frac{3x^{2}}{3x^{2}} \right) = 3x^{2} \left(4x^{3} - 6x - 1 \right)$

Step 1: GCF is $4x$

Step 2: Divide by GCF

$$
4x\left(\frac{16x^2}{4x} - \frac{12x}{4x}\right) = 4x(4x - 3)
$$

C $15x^3y^2 + 10x^2y^4$

Solution

Step 1: GCF is $5x^2y^2$

$$
5x^{2}y^{2}\left(\frac{15x^{3}y^{2}}{5x^{2}y^{2}}+\frac{10x^{2}y^{4}}{5x^{2}y^{2}}\right)=5x^{2}y^{2}\left(3x+2y^{2}\right)
$$

 $=(x+y)(a+b)$

Factoring by Grouping

If we have a polynomial that has four terms we may apply factoring by grouping $ax + bx + ay + by = x(a+b) + y(a+b)$

Example

Factor the polynomial $x^3 - 5x^2 + 3x - 15$

Solution

Step 1: Create smaller groups within the problem, usually done by grouping the first two terms together and the last two terms together. $x^3 - 5x^2 + 3x - 15$

Step 2: Factor out the GCF from each of the two groups. $x^2(x-5) + 3(x-5)$

Step 3: The one thing that the two groups have in common is $(x-5)$, so you can factor out $(x-5)$ leaving the following:

 $(x^2+3)(x-5)$

Factoring $ax^2 + bx + c$

Multiply the coefficient of the leading term a by the constant term *c*. List the factors of this product (*a* • *c*) to find the pair of factors, f_1 and f_2 , that sums to b , the coefficient of the middle term.

Example

Factor the following polynomials

C $x^2 - 4x - 12$

Solution

 $a=1, b=-4, c=-12$ Step 1: $ac = 1 \times 12 = 12$ Step 2: Factors (12): (1, 12), (2, 6), (3, 4) Step 3: Use the factors to find the value of $b \rightarrow -4$, by addition or subtraction $-6 + 2 = -4$ Step 4: Since $a = 1$, we can factor directly by using the pre chosen factors: $-6 & 2$

$$
x^2 - 4x - 12 = (x - 6)(x + 2)
$$

$$
10\quad
$$

Complex numbers

A complex number is a number that can be expressed in the form $a + bi$, where a is the real unit and bi is the imaginary unit, the imaginary number is $i = \sqrt{-1}$

$$
i1 = i
$$

\n
$$
i2 = \sqrt{-1} \times \sqrt{-1} = -1
$$

\n
$$
i3 = i1 \times i2 = i1 \times (-1) = -i
$$

\n
$$
i4 = i2 \times i2 = -1 \times (-1) = 1
$$

\n
$$
i5 = i4 \times i1 = 1 \times i = i
$$

The pattern of i^n is repeated for all multiples of 4, therefore to simplify i^n

Step 1: Find $n \div 4$

Example: Simplify

Step 2: Check if the remainder is

Operations on Complex Numbers

To add or subtract complex numbers we apply the required operation to the corresponding parts for example: $(3-8i)+(2+5i) = (3+2)+(-8+5)i = 5-3i$

To multiply two complex numbers we use FOIL or distributive in the same way as we did in multiplying polynomials $(a+b)(c+d) = ac + ad + bc + bd$

Example

Multiply the following two complex numbers $(2+3i)(1-2i)$

Solution

 $(2+3i)(1-2i) = 2 \cdot 1 + 2 \cdot -2i + 3i \cdot 1 + 3i \cdot -2i$
= 2 $-4i + 3i - 6i^2$ $= 2 - i - 6 - 1$ $= 2 - i + 6$ $= 8 - i$

Conjugate of complex number

The conjugate of complex is another complex number that has the same real as the original complex number and the imaginary part has the same magnitude but opposite sign. The product of a complex number and its complex conjugate is a real number. $(a + bi)(a - bi) = a^2 + b^2$

To divide by a complex number or to simplify a fraction that has a complex number denominator we multiply

by $\frac{conjugate}{conjugate}$ of the divisor or the denominator.

Two complex numbers are said to be equal if and only if their real parts are equal and their imaginary parts are also equal.

Example

Find *X* and *y* that makes the equation true $x + 6i = 3 - 2yi$

Real part imaginary part $6 = -2y$ $y = \frac{6}{-2}$ $x = 3$

Quadratic Formula and Discriminant

 $=-3$

To solve any quadratic equation of the form $ax^2 + bx + c$ you can use the quadratic formul $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$ You can use the discriminant to determine the number of real roots (solutions) of a quadratic equation. The discriminant is the radicand $b^2 - 4ac$ in the quadratic formula.

26. Find the discriminant of
$$
x^2 - 2x = 0
$$

\nA 4
\nB 0
\nC -8
\nD -4
\n $x^2 + 3x = (1)x^2 + (-2)x + 0 = 0$
\nDiscriminant
\n $= b^2 - 4ac$
\n $a = 1, b = -2, c = 0$
\n $= (-2)^2 - 4 \cdot 1 \cdot 0$
\n $= 4$

27. How many roots does the following equation have?
\n
$$
-x + 4x^2 + 2 = 0
$$

\nA 2 different real roots
\nB 2 complex roots
\nC 1 real and 1 complex root
\nD 1 real root of multiplicity 2
\n $-x + 4x^2 + 2 = 4x^2 - x + 2$ Standard form

$$
-x + 4x + 2 = 4x - x + 2
$$

\n
$$
= (4)x^{2} + (-1)x + 2
$$

\n
$$
a = 4 \t b = -1 \t c = 2
$$

\ndiscriminate
$$
= b^{2} - 4ac
$$

\n
$$
= (-1)^{2} - 4 \cdot 4 \cdot 2
$$

\n
$$
= 1 - 32
$$

\n
$$
= -31 < 0
$$
 negative

B

28. Solve the equation
$$
x^2
$$
 0
\nA $x = -2 \pm i$ B $x = 2 \pm i$
\nB $x = 2 \pm i$ D $x = 1 \pm i$
\n $x^2 - 4x + 5 = (1)x^2 + (-4)x + 5$
\n $a = 1$ b = -4 c = 5
\n $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
\n $= \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 5}}{2 \cdot 1}$
\n $= \frac{4 \pm \sqrt{16 - 20}}{2}$
\n $= \frac{4 \pm \sqrt{-4}}{2}$
\n $= 2 \pm i$

A $x^2 = 18$ **B** $x^2 - 2x + 6 = 0$ **C** $x^2 - 3x - 4 = 0$ **D** $x^2 + 10x = -25$ **28. Solve the equation 29. Which equation has a real root of multiplicity 2**

Method (1)

The perfect square equation has 1 root of multiplicity 2 in the perfect square $c = \left(\frac{b}{2}\right)^2$

The equation in option 'D' is a perfect square

$$
x^{2} + 10x = -25 \longrightarrow x^{2} + 10x + 25 = 0
$$

\n
$$
a = 1 \quad b = 10 \quad , \quad c = 25
$$

\n
$$
c = \left(\frac{b}{2}\right)^{2} \longrightarrow 25 = \left(\frac{10}{2}\right)^{2} \longrightarrow True
$$

Method (2)

Check all the discriminant of the equations

$$
b2 - 4ac = (10)2 - 4 \cdot 1 \cdot 25
$$

= 100 - 100 = 0

If the discriminant $= 0$ then the equation **C** has 1 real root of multiplicity 2 **D**

The prime polynomial is a polynomial that we can't factorize in any method of the previous methods.

The equation $5x - 3$ can't be factorized any more.

$$
\frac{24}{6} = (x - y)
$$

4 = (x - y)

B

Substitute

Adding and Subtracting Polynomials

To add or subtract Polynomials we start by combining like terms then we get rid of parentheses and use the distributive property as needed.

Finally, we check again for like terms.

Rational Expressions

A rational expression is simply a quotient of two polynomials. It is a fraction whose numerator and denominator are polynomials. Since dividing by zero is undefined, then the denominator must not be zero, otherwise the rational expression will be undefined.

Therefore the zero of the denominator are excluded from the domain of the rational expression.

Example

Find the values that make the following rational expression undefined $\frac{x+5}{(x-2)(x+3)}$ **Solution**

let the denominator $= 0$

$$
(x-2)(x+3) = 0
$$

\n $x-2 = 0$ or $x+3 = 0$
\nSo the expression is undefined when $2x = 3$
\n**34. The rational expression** $\frac{x-4}{x^2-16}$
\nis undefined at ...
\n**A** $x = 16$
\n**B** $x = 4$
\n**C** $x = \pm 4$
\n**D** $x = \pm 16$
\n**5** $x = 4$
\n**6** $x = 4$
\n**7** $x = 2$
\n**8** $x = -3$
\n**9** $x = 16$
\n**10** $x = \pm 16$
\n**11** $x = 16$
\n**12** $x = 4$
\n**13** $x = 1$
\n**14** $x = 16$
\n**15** $x = 4$
\n**16** $x = \pm 16$
\n**17** $x = 3$, $x \ne -4$
\n**18** $x = 4$
\n**19** $x = \pm 16$
\n**10** $x = \pm 16$
\n**11** $x = 16$
\n**12** $x = \pm 4$
\n**13** $x = 4$
\n**14** $x = 16$
\n**15** $x = 4$
\n**16** $x = 4$
\n**17** $x = 3$, $x \ne -4$
\n**18** $x = 4$
\n**19** $x = \pm 4$
\n**10** $x = \pm 4$
\n**11** $x = 4$
\n**12** $x = 4$
\n**13** $x = 4$

Multiplying Rational Expression

To multiply rational expressions

1- Completely factor all numerators and denominators.

2- Simplify all common factors.

Example

Multiply
$$
\frac{x^5}{x-6}
$$
. $\frac{x^2-6x}{x^8}$ Solution $\frac{x}{(x-6)}$. $\frac{x(x-6)}{x^8}$ X as common factor
\n
$$
= \frac{x^5 \cdot x^1}{x^8}
$$
 $x^9 - x^8 = x^{a+b}$, $\frac{x^a}{x^b} = x^{a-b}$
$$
= x^{-2}
$$

$$
= \frac{1}{x^2}
$$

\n36. Multiply $x^2 - y^2$. $\frac{9y^2}{3y}$. $\frac{9y^2}{x-y}$
$$
= \frac{1}{3^2}
$$

$$
\frac{x^2 - y^2}{3y} \cdot \frac{9y^2}{x-y} = \frac{(x-y)(x+y)}{3y} \cdot \frac{9y^2}{(x-y)}
$$
 Difference of squares
\n
$$
= \frac{9y^2(x+y)}{3y}
$$
 Differentiate of squares
\n
$$
= \frac{9y^2(x+y)}{3y}
$$

$$
= 3y(x+y)
$$

 \sim

Dividing Rational Expressions

Rational expressions are divided in the same way just like dividing fractions. To divide two fractions, we multiply the first fraction by the reciprocal of the second fraction**.**

Example

 $\pmb{\chi}$

 \mathcal{L}

Simplify
$$
\frac{5a}{2b} \div \frac{10a}{4b}
$$

\nSolution
\n
$$
\frac{5a}{2b} \div \frac{10a}{4b} = \frac{5a}{2b} \times \frac{4b}{10a}
$$

\n
$$
= \frac{5}{10} \cdot \frac{4}{2} \cdot \frac{a}{a} \cdot \frac{b}{b}
$$

\n
$$
= \frac{1}{2} \cdot \frac{2}{1} \cdot 1 \cdot 1 = 1
$$

\n37. Simplify $\frac{x(x^2 + 3x - 18)}{(x+3)(x-4)} \div \frac{x(x+6)}{x+3}$
\n
$$
= \frac{x^3}{x-4}
$$

\n
$$
\frac{x+3}{x-4} = \frac{x^3}{x+3}
$$

\n
$$
\frac{x^2 + 3x - 18}{x-4} \div \frac{x(x+6)}{x+3} = \frac{x(x+6)(x-3)}{(x+3)(x-4)}x + \frac{x+3}{x(x+6)}
$$

\nSimplify then we get
$$
= \frac{x-3}{x-4}
$$

\n
$$
\frac{x-3}{x-4} = \frac{x(x+3)(x-4)}{(x+3)(x-4)}x + \frac{x+3}{x(x+6)}
$$

\n
$$
= \frac{x-3}{x-4}
$$

\n
$$
= \frac{x-3}{x-4}
$$

Example

$$
d \text{ quotient of } \frac{x^4 + 2x^3 - 2x^2 - 3x + 2}{x + 2}
$$
\n
$$
\frac{1}{x + 2}
$$
\n
$$
\frac{-2x^3 - 2x^2 - 3x + 2}{x + 2} = \frac{x^3(x + 2) - (2x^2 + 3x - 2)}{x + 2}
$$

$$
\begin{array}{r}\n\overline{x+2} \\
x+2 \\
= \frac{x^3(x+2)-(2x-1)(x+2)}{(x+2)} \\
= x^3 - 2x + 1\n\end{array}
$$

38. Simplify
$$
(x^2 + x - 20)(x - 4)^{-1}
$$

\nA $x + 5$
\nB $x - 5$
\nC $x - 4$
\n $(x^2 + x - 20)(x - 4)^{-1} = \frac{x^2 + x - 20}{x - 4}$
\n $= \frac{(x - 4)(x + 5)}{(x - 4)}$

 $= x+5$ \geqslant **A**

Remainder Theorem

It states that the remainder of the division of a polynomial $f(x)$ by a linear polynomial $x-r$ is equal to $f(r)$

Example

Find the remainder of dividing $f(x) = x^3 + 2x - 1$ by $x - 1$ Since the divisor is $x-1$ we will find $f(1) \longrightarrow f(1) = (1)^3 + 2(1) - 1$ $= 1 + 2 - 1$ $= 2$

Method 1: Using Remainder Theorem

Step 1: By trial and error we find $f(-3)$, $f(3)$, $f(-2)$ and $f(2)$ and choose the option that leads to 2.
 $f(3) = (3)^2 - 4(3) + 5$

$$
= 9 - 12 + 3
$$

= 2
Step 2: $x = 3$

 $x - 3 = 0$

Method 2: Use synthetic division to divide the function by all options $x = 3$ **but don't forgot to flip the sign** $x - 3 = 0$ \rightarrow $f(x) = x-3$ $3|1 - 4 5$ **Divide by option B** $\rightarrow x-3$

 \gg B

A -3 **B** 3 **C** 2 **D** -2 **41.** Find *k*such that if we divide $f(x) = x^3 - kx + 4$ by $x + 2$ the remainder would be 2

$$
(x-r) \rightarrow x+2 = x-(-2) \rightarrow r = -2
$$

By remainder theorem $f(-2) = 2$

$$
f(x) = x3 - kx + 4
$$

\n
$$
f(-2) = (-2)3 - k(-2) + 4
$$

\n
$$
2 = -8 + 2k + 4
$$

\n
$$
2 = -4 + 2k
$$

\n
$$
6 = 2k
$$

\n
$$
k = 3
$$

Factors of polynomials

If $f(r) = 0$, that means the remainder is 0, and then $(x - r)$ is a factor of the polynomial

Roots of Polynomial equations

The roots (also called zeros or solutions) of a polynomial $p(x)$ are the values of x for which $p(x)$ is equal to zero.

To find the zero algebraically we let $p(x) = 0$. The roots on the graph are the intersection points of the curve of and the $p(x)$ *x***-***axis*.

Example

How many roots dose $f(x)$ have

Solution:

Number of the roots is the number of Xintercepts the curve intercepts the $x - axis$ 3 **times** therefore $f(x)$ has 3 roots.

Note: the number of roots of a polynomial is the same as its degree. For example $f(x) = 2x^5 + 3x^3 + x^2 + 1$ **has five roots.**

Complex Roots

For any polynomial, if a complex number is a root of the polynomial then its conjugate is also a root of the polynomial.

Since the conjugate must also be a root of the polynomial, therefore the polynomial has 3 root and it degree is 3 $\geq C$

Composite Function

 $(f \circ g)(x)$ is a composite function of $f(x)$ and $g(x)$

The composite function is read as " f of g of x " $(f \circ g)(x) = f[g(x)]$

The steps required to perform this operation is to start by the inner function $g(x)$ and substituting it in the outer function which is $f(x)$

Example Example

If
$$
f(x) = 4x^2
$$
, $g(x) = 3x + 1$,
\nthen find $(f \circ g)(x)$
\nSolution:
\n $(f \circ g)(x) = f[g(x)]$
\n $= f(3x+1)$
\n $= 4(3x+1)^2$
\n $= 4(9x^2+6x+1)$
\n $= 36x^2 + 24x + 4$
\n $f(x) = 4x^2$
\n $g(4)$
\n \Rightarrow

Since complex root occurs in pairs, then maximum number of complex roots is 4 D

Example

If $f(x) = 4x^2$, $g(x) = 5x$, **then find** $(f \circ g)(2)$

Solution:

$$
(f \circ g)(2) = f[g(2)]
$$

= f(5 \cdot 2)
= 4(10)²
= 4 \cdot 100
= 400

```
If f(x) = \{(8,2), (2,-1), (5,-3)\}, g(x) = \{(2,-3), (4,2), (5,8)\}\then find (f \circ g)(x)
```
 $(f \circ g)(x) = f[g(x)]$ $g(2) = -3 \rightarrow f(-3)$ undefined $g(4) = 2 \rightarrow f(2) = -1$ $g(5) = 8 \rightarrow f(8) = 2$ $\rightarrow (f \circ g)(x) = \{(4,-1), (5,2)\}\$

49. If
$$
f(x) = 3x, (f \circ g)(x) = 3x + 3
$$

\nthen find $g(x)$
\n**2** If $f(x) = x^2 + 1$, $g(x) = x - 3$, $(f \circ g)(x) = 3$
\n**2** If $f(x) = x^2 + 1$, $g(x) = x - 3$, $(f \circ g)(x) = 3$
\nthen find x such that $(f \circ g)(x) = (g \circ f)(x)$
\n $\Rightarrow g(x) = x + 1$
\n $\Rightarrow g(x) = x + 1$
\n**3** If $f(x) = x^2, g(x) = \sqrt{x^2 + 16}$
\nthen find $(f \circ g)(x)$
\n $\Rightarrow f(\sqrt{x^2 + 16})$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)^2$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)^2$
\n $\Rightarrow f(\sqrt{x^2 + 16})^2$
\n $\Rightarrow g(x^2 + 16)^2$
\n $\Rightarrow g(x^2$

Inverse Function

The inverse function of $f(x)$ is denoted by $f^{-1}(x)$. To find the inverse function of $f(x)$ we rewrite $f(x)$ as y, then swap *y* by *X*, and solve for *Y* which is $f^{-1}(x)$.

Example

Radical Equation

A radical equation is an equation that has a variable in a radicand or has a variable expression with a rational exponent

$$
y = \sqrt{x - h} + k \quad \text{or} \quad y = (x - h)^{\frac{a}{b}} + k
$$

Domain
 $x \ge h \qquad y \ge k$
 $[h, \infty)$ $[k, \infty)$

Example

Find the domain of $f(x) = \sqrt{3x+6}$

Solution
\nLet
$$
3x + 6 \ge 0
$$

\n $3x \ge -6$
\n $x \ge -2$

Radical Rules

If the index of the radical expression is even and the exponent of the radicand is even too but the output of the radical expression is odd then we have to use absolute value.

Example
$$
\sqrt[4]{(a+b)^{12}} = |(a+b)|^{\frac{12}{4}}
$$

$$
= |a \ b|^3
$$

Note: If the operation between the radicand variables is addition or subtraction then we cannot distribute the root.

Example

$$
\sqrt[n]{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}
$$

$$
\sqrt[n]{a-b} \neq \sqrt[n]{a} - \sqrt[n]{b}
$$

Adding Rational Expressions

To add or subtract two rational expressions with unlike denominators we find a new common denominator. But if they have like denominator then we simply add or subtract the numerators over the denominator.

Example

$$
\frac{x^2 + 2x + 3}{(x^2 - 9)} + \frac{4x + 6}{(x^2 - 9)}
$$
\n
$$
= \frac{x^2 + 2x + 4x + 6 + 3}{x^2 - 9}
$$
\n
$$
= \frac{x^2 + 6x + 9}{x^2 - 9}
$$
\n
$$
= \frac{(x + 3)^2}{(x - 3)(x + 3)}
$$
\n
$$
= \frac{x + 3}{x - 3}
$$

Vertical and Horizontal Asymptotes

For any $f(x) = \frac{a(x)}{b(x)}$, $b(x) \neq 0$, $a(x)$ and $b(x)$

- have no common factor then $f(x)$ has:
- 1- Vertical asymptote (VA) if $b(x) = 0$
- 2- Horizontal asymptote (HA)
	- a- Degree of $a(x)$ < degree of $b(x)$ $HA \rightarrow y = 0$
	- b- Degree of $a(x)$ = degree of $b(x)$

$$
HA \rightarrow \frac{\text{coefficient of } a(x)}{\text{coefficient of } b(x)}
$$

3- No horizontal asymptote if degree of $a(x) = b(x)$.

Special case of $f(x) = \frac{a(x)}{b(x)}$ if $a(x)=1$ and $b(x)=x$ then it is called the parent function

$$
f(x) = \frac{1}{x} \text{ for } f(x) = \frac{1}{x - h} + k
$$

1- $f(x)$ is undefined if $x = h$

2- The vertical asymptote is at $3 = h$

- The horizontal asymptote is at $y = k$

72. Find the point where $f(x)$ **is undefined** $f(x) = \frac{1}{x+4} + 5$ **D B C A**

> $f(x)$ is in the form $f(x) = \frac{1}{x-h} + k$ therefore it is undefined at $x = h \rightarrow x = -4$ Or let the denominator = $0 \rightarrow x + 4 = 0$ $x = -4$ \geqslant **C**

73. Find the vertical asymptote of $f(x) = \frac{13}{x+3} - 5$ **76. Find the horizontal asymptote of** $f(x) = \frac{5x^3}{3x^3 - 2x^2 - 5}$ **A** $x = 13$ **B** $x = -3$ **C** $x = 3$ **D** $x = 4$ **A** $y = \frac{1}{2}$ **B** Let the denominator $= 0 \rightarrow x + 3 = 0$ $\gg B$ $x = \frac{1}{x}$ **D 74.** Find the vertical asymptote of $f(x) = \frac{x-3}{x^2+7x+12}$ Since the Degree of $a(x)$ = degree of $b(x) =$, then the horizontal **A** $x = -4$ **B** asymptote is:
 $y = \frac{\text{coefficient of } a(x)}{\text{coefficient of } b(x)}$ **C** $x = 3$, $x = 4$ $y = \frac{5}{3}$ \Rightarrow **A Since no common factor Let the denominator =0** $(x+3)(x+4) = 0$ $x + 3 = 0$ or $x + 4 = 0$ $x = -3$ $x = -4$ **75.** Find the vertical asymptote of $f(x) = \frac{x+3}{x^2+5x+6}$ **A** $x = 2$, $x = 3$ **B** $x = -2$, $x = -3$ **C** $x = -2$
 D $x = -3$

 $f(x) = \frac{x+3}{x^2 + 5x + 6} = \frac{x+3}{(x+2)(x+3)}$ $=\frac{1}{x+2}$ let $x + 2 = 0$ **Note:** $x = -3$ $x = -2$ **is called a discontinuity**

Variation

Extra Resource

(Finding the LCM and GCF)

Use the Ladder Method to find the LCM and GCF:

Step 4: Use the numbers on the outside $\sqrt{2}$ $\sqrt{2}$

of the ladder to help you find the $2 \begin{array}{|c|c|c|} 2 & 12 & 18 \end{array}$

• To find the LCM: Multiply **1** 2 3

 all of the numbers outside to the left and below the L, or "all around the L.

$LCM = 2 \times 2 \times 3 \times 2 \times 3 = 72$

 To find the GCF: Multiply all of the numbers on the outside LEFT of the L.

$GCF = 2 \times 2 \times 3 = 12$

YOU TRY: Find the LCM and GCF of the given numbers.

