| Types and Examples of Solutions |                  |                |                         |  |  |
|---------------------------------|------------------|----------------|-------------------------|--|--|
| Types of Solution               | Example          | Solvent        | Solute                  |  |  |
| Gas                             | air              | Nitrogen (gas) | Oxygen (gas)            |  |  |
| Liquid                          | Carbonated water | Water (liquid) | Carbon dioxide (gas)    |  |  |
|                                 | Ocean water      | Water (liquid) | Oxygen gas (gas)        |  |  |
|                                 | antifreeze       | Water (liquid) | Ethylene glycol(liquid) |  |  |
|                                 | Vinegar          | Water (liquid) | Acetic acid (liquid)    |  |  |
|                                 | Ocean water      | Water (liquid) | Sodium chloride (solid  |  |  |
| Solid                           | Dental amalgam   | Silver (solid) | Mercury (liquid)        |  |  |
|                                 | Stee1            | Iron (solid)   | Carbon (solid)          |  |  |

Solutions are homogeneous mixtures that contain two or more substances called the solute and solvent.

Most solutions are liquids, but gaseous and solid solutions exist.

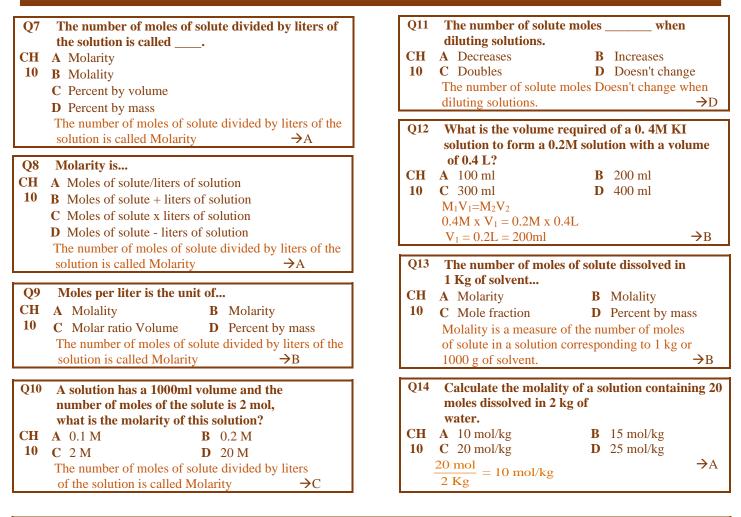
A substance that dissolves in a solvent is **soluble**.

•Two liquids that are soluble in each other in any proportion are **miscible**.

•A substance that does not dissolve in a solvent is insoluble.

•Two liquids that can be mixed but separate shortly after are immiscible.

The concentration of a solution is a measure of how much solute is dissolved in a specific amount of solvent or solution. Concentration can be described as concentrated or dilute.


## •Dilution equation: $M_1V_1 = M_2V_2$

| Concentration Ratios      |                                                                |  |
|---------------------------|----------------------------------------------------------------|--|
| Concentration Description | Ratio                                                          |  |
| Percent by mass           | $\frac{\text{mass of solute}}{\text{mass of solution}} x100\%$ |  |
| Percent by volume         | volume of solute<br>volume of solution                         |  |
| Molarity                  | Moles of solute<br>Liters of solvent                           |  |
| Molality                  | Moles of solute<br>Kg of solvent                               |  |
| Mole fraction             | Moles of solute           Moles of solute + Moles of solvent   |  |

→A

→D

| Q1A measure of how much solute is dissolved in a<br>specific amount of solvent or solutionCHA Solution VolumeB Solution Mass10C Solution ConcentrationD Solution Solubility<br>The concentration of a solution is a measure of how<br>much solute is dissolved in a specific amount of<br>solvent or solution.→C          | <ul> <li>Q4 Miscible substances are:</li> <li>CH A Two liquids that are not soluble in each other</li> <li>10 B Solids that do not dissolve in liquids</li> <li>C Two liquids that are soluble in each other</li> <li>D Solids that do not dissolve in liquids</li> <li>Two liquids that are soluble in each other in any proportion are miscible. →C</li> </ul>  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Q2 The ratio between solute and solvent or the solution as a whole</li> <li>CH A Density B Concentration <ol> <li>C Volume D Mass</li> <li>The concentration is the ratio between solute and solvent or the solution. →B</li> </ol> </li> <li>Q3 The percent by mass of a solution containing 10 g of</li> </ul> | <ul> <li>Q5 Immiscible substances are:</li> <li>CH A Two liquids that are not soluble in each other</li> <li>10 B Solids that do not dissolve in liquids</li> <li>C Two liquids that are soluble in each other</li> <li>D Solids that do not dissolve in liquids</li> <li>Two liquids that can be mixed but separate shortly after are immiscible. → A</li> </ul> |
| dissolved solute in 40g of water         CH A 10% B 9% C 5% D 20%         10 $\frac{10g}{10+40}$ x100%         = 20% $\rightarrow$ D                                                                                                                                                                                      | Q6 The percent by volume of a solution containing<br>500ml of HNO3 in 2L of H2OCHA10%B9%C5%D20%10 $500 \text{ ml}$<br>(500+2000) mlx100%<br>$\rightarrow D$ = 20%                                                                                                                                                                                                 |



## Part 2: Solvation

#### **The Solvation Process**

- Solvation is the process of surrounding solute particles with solvent particles to form a solution.
- Solvation in water is called hydration.
- The attraction between dipoles of a water molecule and the ions of a crystal is greater than the attraction among ions of a crystal.
- During solvation, the solute must separate into particles and move apart, which requires energy.
- The overall energy change that occurs during solution formation is called the heat of the solution.

#### Solubility

- Solubility depends on the nature of the solute and solvent.
- Unsaturated solutions are solutions that contain less dissolved solute for a given temperature and pressure than a saturated solution.
- Saturated solutions contain the maximum amount of dissolved solute for a given amount of solute at a specific temperature and pressure.
- Solubility is affected by increasing the temperature of the solvent because of the kinetic energy of the particles increases.
- A supersaturated solution contains more dissolved solute than a saturated solution at the same temperature.
- To form a supersaturated solution, a saturated solution is formed at a high temperature and then slowly cooled.
- Supersaturated solutions are unstable.
- Gases are less soluble in liquid solvents at high temperatures.
- The solubility of gases increases as their external pressure is increased.

Henry's law states that at a given temperature, the solubility (S) of a gas in a liquid is directly proportional to the pressure (P)

### Q15 Solutes in a solution can be:

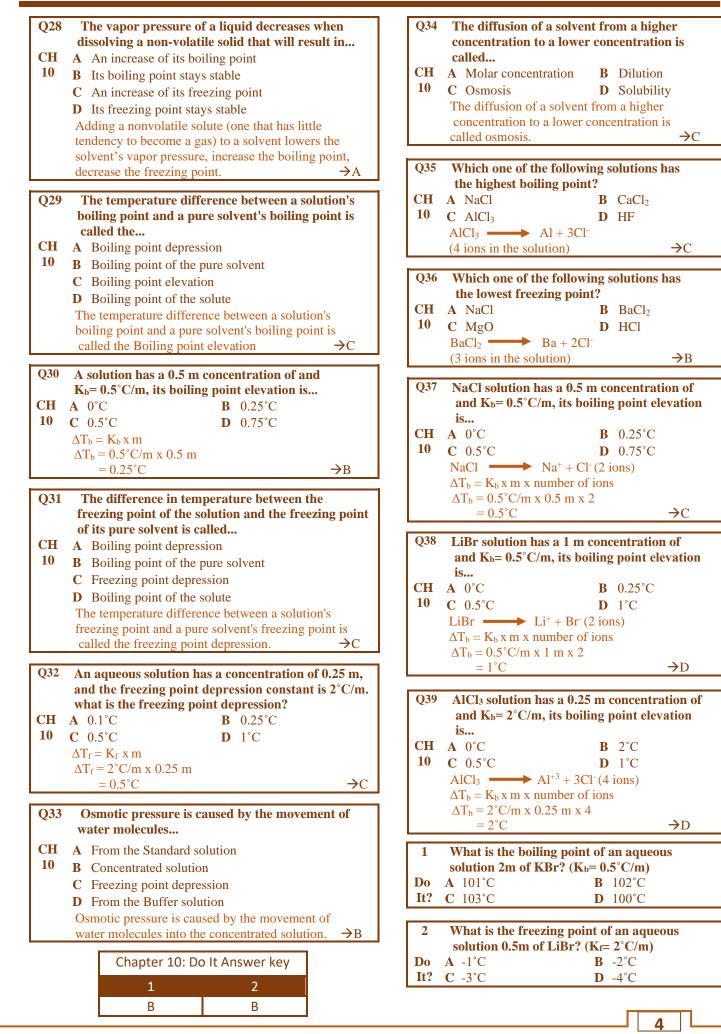
- CH A Liquids only
- **10 B** Liquids and solids only
  - C Gases and solids only
  - **D** Gases, liquids, or solids
    - Solutes in a solution can be Gases, liquids, or solids  $\rightarrow D$
- Q16
   For a given amount, which type of solution contains the LEAST amount of solute?

   CH
   A Solvated
   B Saturated

   10
   C Supersaturated
   D Unsaturated

   Unsaturated solutions are solutions that contain less dissolved solute for a given temperature and pressure than a saturated solution.
   →D

 $\frac{S_1}{P_1} = \frac{S_2}{P_2}$ 


2

| Q17       Which is NOT a type of solution?         CH       A Polyunsaturated       B Saturated         10       C Supersaturated       D Unsaturated         Solution could be saturated, unsaturated, or supersaturated       →A         Q18 Which of the following solutions contains the largest amount of solute?         CH       A Buffer solution       B Saturated         10       C Supersaturated       D Unsaturated                                                                                                                                                                                                                                                                                                                                             | Q21       The solubility of gas in liquid increases         by       by         CH10       A Increasing agitation         B Increasing volume       C         C decreasing pressure       D         D Decreasing the temperature       Decreasing the temperature increase         solubility of gases       →D         Q22       How do we make carbon dioxide dissolve in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>10 C Supersaturated D Unsaturated<br/>A supersaturated solution contains more dissolved solute<br/>than a saturated solution at the same temperature. →C</li> <li>Q19 The amount of solute in a supersaturated<br/>solution is greater than that of a solution.</li> <li>CH A Buffer solution B Saturated</li> <li>10 C Standard D Normal<br/>A supersaturated solution contains more<br/>dissolved solute than a saturated solution at<br/>the same temperature. →B</li> </ul>                                                                                                                                                                                                                                                                                      | liquid?         CH       A Continuous agitation         10       B decreasing the pressure         C Increasing the temperature         D Decreasing the temperature         Decreasing the temperature increase         solubility of gases         Q23         When the pressure is 40 Pa, the solubility of the gas is 20 g/L. what is the pressure if the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Q20 At a given temperature, the solubility of a gas is directly proportional to what?</li> <li>CH A Volume B Mass</li> <li>10 C Molarity D Pressure Henry's law states that at a given temperature, the solubility (S) of a gas in a liquid is directly proportional to the pressure (P) →D</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               | solubility is 10 g/L         CH A 20 Pa       B 800 Pa         10       C 200 Pa       D 400 Pa $P_2 = (P1 x S_2) \div S_1$ $P_2 = (40 Pa x 10g/L) \div 20 g/L$ $= 20 Pa$ $\rightarrow A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Part 3: Colligative 1</li> <li>Colligative properties are physical properties of solutions that are affect particles but not by the identity of dissolved solute particles.</li> <li>Colligative means depending on the collection</li> <li>Colligative properties include vapor pressure lowering, boiling point electrolytes that produce many ions are strong electrolytes.</li> <li>Electrolytes that produce only a few ions are weak electrolytes.</li> <li>Many molecular compounds do not ionize when dissolved and do not</li> <li>There are some exceptions, so those molecular compounds that do ioni</li> <li>Adding a nonvolatile solute (one that has little tendency to become a gincrease the boiling point, decrease the freezing point.</li> </ul> | levation, freezing point depression, and osmotic pressure.<br>form a solution that conducts electricity.<br>conduct electricity, these are called nonelectrolytes.<br>ize are electrolytes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Boiling Point elevation         ∆T <sub>b</sub> = K <sub>b</sub> m       ∆T <sub>b</sub> represents the boiling point elevation         K <sub>b</sub> represents the molal boiling elevation constant         m represent molality         The temperature difference is equal to the molal boiling point elevation constant multiplied by the solution's molality.                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} \textbf{Boiling Point elevation} \\ & \Delta T_f = K_f \textbf{m} & \Delta T_f \text{ represents temperature} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $ |
| <ul> <li>Q24 Nonvolatile solutesthe vapor pressure of a solution.</li> <li>CH A Increase B Decrease</li> <li>10 C Do not change D Unpredictably change Nonvolatile solutes decrease the vapor pressure of a solution. →B</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>Q26 Which of the following is not a colligative property of solutions?</li> <li>CH A Boiling point elevation</li> <li>10 B Osmotic pressure</li> <li>C Density</li> <li>D Freezing point depression</li> <li>Colligative properties include vapor pressure lowering, boiling point elevation, freezing point depression, and osmotic pressure. →C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <ul> <li>Q25 Vapor pressure when the number of solute particles in a solvent</li> <li>CH A Increases, increases B Increases, decreases</li> <li>10 C Decreases, increases D Decreases, decreases</li> <li>Vapor pressure decreases when the number of solute particles in a solvent increases →C</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q27       The vapor pressure effect on 1 mol NaCl is lower than the vapor pressure effect on         CH       A 1 mol KCl       B 1 mol MgO         10       C 1 mol HBr       D 1 mol AlCl <sub>3</sub> AlCl <sub>2</sub> Al + 3Cl <sub>2</sub> (4 ions in the solution)       D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

→D

AlCl<sub>3</sub>  $\longrightarrow$  Al + 3Cl<sup>-</sup> (4 ions in the solution)

3



5