CHAPTER 8: States of Matter

CHAPTER 9: States of Matter

Types of Intermolecular forces					
Туре	Present in	Molecular prespective	Strength		
Dispersion*	All molecules and atoms $\delta -$	$\delta^{+\cdots\delta} \delta^{+}$	0.05–20- kJ/mol		
Dipole-dipole	Polar molecules δ +	δδ+ δ-	3–20+ kJ/mol		
Hydrogen bonding	Molecules containing H bonded to F, O, or N	δ^+ δ^+ δ^+ δ^+ δ^+	10–40 kJ/mol		
lon-dipole	Mixtures of ionic compounds and polar compounds		30–100+ kJ/mol		

- Dispersion forces are weak forces that result from temporary shifts in density of electrons in electron clouds.
- Dipole-dipole forces are attractions between oppositely charged regions of polar molecules.
- **Hydrogen** bonds are special dipole-dipole attractions that occur between molecules that contain a hydrogen atom bonded to a small, highly electronegative atom with at least one lone pair of electrons, typically fluorine, oxygen, or nitrogen

CHAPTER 8: States of Matter

Part 3: Liquids and Solids						
 Liquids: Forces of attraction keep molecules closely packed in a fixed volume, but not in a fixed position Liquids are much denser than gases because of the stronger intermolecular forces holding the particles together. Large amounts of pressure must be applied to compress liquids to very small amounts. Fluidity is the ability to flow and diffuse: liquids and gases are fluids. 						
 Viscosity is a measure of the resistance of a liquid to flow and is determined by the type of intermolecular forces, size and shape of particles, and temperature. The stronger the intermolecular attractive forces, the higher the viscosity. Larger molecules create greater viscosity. Long chains of molecules result in a higher viscosity: cooking oils and motor oils. Increasing the temperature decreases viscosity because the added energy allows the molecules to overcome intermolecular forces. 						
 Increasing the temperature decreases viscosity because the added energy anows the hibitectiles to overcome intermolectular forces and flow more freely. Surface tension is the energy required to increase the surface area of a liquid by a given amount. Surface tension is the a measure of the inwards pull by particles in the interior. The stronger the attraction between particles the stronger the surface tension. Ex. Water Cohesion is the force of attraction between identical molecules. Adhesion is the force of attraction between molecules that are different. Capillary action is the upward movement of liquid into a narrow cylinder, or capillary tube Solids contain particles with strong attractive intermolecular forces. Particles in a solid vibrate in a fixed position. Most solids are more dense than liquids. One exception to this is water. Ice is less dense than liquid water. The hydrogen bonding in ice results in an open symmetrical structure that keeps the water molecules in ice farther apart than in water in a liquid state. 						
A unit cell is the smallest arrangement of atoms in a crystal lattice that has the same symmetry as the whole crystal. Amorphous solids are solids in which the particles are not arranged in a regular, repeating pattern.						
Q18 CH 8	The smallest arrangement of atoms in a crystal that has the same pattern as the crystal is calledACrystal latticeBUnit cellCCrystallineDGeometric cellA unit cell is the smallest arrangement of atoms in a crystal lattice that has the same symmetry as the whole crystal. \rightarrow B	Q23 CH 8	The measure of the resistance of a liquid to flow and is determined by the type of intermolecular forces, size and shape of particles, and temperature A Cohesion B Fluidity C Surface tension D Viscosity Viscosity is a measure of the resistance of a liquid to flow and is determined by the type of intermolecular forces size and shape of particles and temperature			
CH 8	Contain particles with strong attractive intermolecularforces.ASolidsBLiquidsCGasesDPlasmaSolids contain particles with strong attractive intermolecular forces. \rightarrow A	Q24 CH 8	The force of attraction between identical molecules. A Cohesion B Fluidity C Surface tension D Viscosity Cohesion is the force of attraction between identical			
Q20 CH 8	Liquids are than gases because of the strongerintermolecular forces holding the particles together.ALess denserBMuch denserCCweakerDCompressibleLiquids are much denser than gases because of the	Q25	are solids with atoms, ions, or molecules arranged in an orderly, geometric shape. A Negative solids B Crystalline solids			
021	stronger intermolecular forces holding the particles together. $\rightarrow B$	8	C Positive solids D Amorphous solids Crystalline solids are solids with atoms, ions, or molecules arranged in an orderly, geometric shape. \rightarrow B			
CH 8	Including to now and diffuse; inquids and gases are fluids. A Cohesion B Fluidity C Surface tension D Viscosity Eluidity is the ability to flow and diffuse; liquids and	26 CH	The smallest arrangement of atoms in a crystal lattice that has the same symmetry as the whole crystal.			
Q22	A measure of the inwards pull by particles in the interior.	8	8 C Surface tension D Viscosity A unit cell is the smallest arrangement of atoms in a crystal lattice that has the same symmetry as the whole crystal			
CH 8	A CohesionBFluidityC Surface tensionDViscositySurface tension is the a measure of the inwardspull by particles in the interior. \rightarrow C		D A			

3

Г