CHAPTER 4: Quantum Theory & Electron configuration ## Part 1: Quantum Theory In the early 1900s, scientists observed certain elements emitted visible light when heated in a flame. • Analysis of the emitted light revealed that an element's chemical behavior is related to the arrangement of the electrons in its Wavelength (λ) Crest ## The Wave Nature of Light • Visible light is a type of electromagnetic radiation, a form of energy that exhibits wave-like behavior as it travels through space. - All waves can be described by several characteristics. - The wavelength (λ) is the shortest distance between equivalent points on a continuous wave. - The frequency (v) is the number of waves that pass a given point - The amplitude is the wave's height from the origin to a crest. - The speed of light c (3.00 x 10^8 m/s) is the product of it's wavelength and frequency ### • $C = \lambda v$ - Sunlight contains a continuous range of wavelengths and frequencies. - A prism separates sunlight into a continuous spectrum of colors. - The electromagnetic spectrum includes all forms of electromagnetic radiation. - The wave model of light cannot explain all of light's Characteristics. - In 1900, German physicist Max Planck (1858-1947) began searching for an explanation of this phenomenon as he studied the light emitted by heated objects. # Radio 10⁴ 10⁶ Frequency (ν) in hertz Shorte ## • Planck's study led him to a startling conclusion: - -Matter can gain or lose energy only in small, specific amounts called quanta. - -A quantum is the minimum amount of energy that can be gained or lost by an atom. - –Planck's constant has a value of $6.626 \times 10^{-34} \, J$. s - Albert Einstein proposed in 1905 that light has a dual - A beam of light has wavelike and particle-like properties. - A photon is a particle of electromagnetic radiation with no mass that carries a quantum of energy. - The atomic emission spectrum of an element is the set of frequencies of the electromagnetic waves emitted by the atoms of the element. Each element's atomic emission spectrum is unique. **Amplitude** Wavelength (λ) Lower frequency Origin Trough ## What is the smallest amount of energy that can be gained or lost by an atom? - CH A Electromagnetic photon - Beta particle C Quanta Wave-particle D A quantum is the minimum amount of energy that can be gained or lost by an atom. ## What is a particle of electromagnetic radiation with no mass called? - CH **A** Beta particle - \mathbf{B} Alpha particle C Quanta D Photon A photon is a particle of electromagnetic radiation with no mass that carries a quantum of energy. →D #### Q3The shortest distance from equivalent points on a continuous wave is the: - CH A Frequency - Wavelength - **C**Amplitude - **D** Crest The wavelength (λ) is the shortest distance between equivalent points on a continuous wave. - The energy of a wave increases as - **A** Frequency decreases \mathbf{CH} - **B** Wavelength decreases - **C** Wavelength increases D Distance increases The energy of a wave increase when wavelength (λ) is decreased. #### 05 The energy of a wave increases as - \mathbf{CH} **A** Frequency decreases - **B** Frequency increases - **C** Wavelength increases - **D** Distance increases - The energy of a wave increases as frequency of a wave increases. #### **Q6** Albert Einstein proposed in 1905 that light has a ... - \mathbf{CH} **A** Dual nature. - **B** Frequency only - 4 **C** Wavelength only - **D** Proton - Albert Einstein proposed in 1905 that light has a dual **→**A #### **Q7** Which of the following spectrum has shortest wavelength - CH **A** 100 Hz **B** 200 Hz - C 300 Hz D 400 Hz - Highest frequency has shortest wavelength ## CHAPTER 4: Quantum Theory & Electron configuration ## **Part 2: Electron Configuration** The arrangement of electrons in the atom is called the **electron configuration**. - The aufbau principle states that each electron occupies the lowest energy orbital available. - The Pauli exclusion principle states that a maximum of two electrons can occupy a single orbital, but only if the electrons have opposite spins. - Hund's rule states that single electrons with the same spin must occupy each equal-energy orbital before additional electrons with opposite spins can occupy the same energy level orbitals. ## Electron Configurations and Orbital Diagrams for Elements 1-10 | Element | Atomic Number | Orbital Diagram
1s 2s 2p, 2p, 2p, | Electron Configuration Notation | |-----------|---------------|--------------------------------------|---| | Hydrogen | 1 | 1 | 151 | | Helium | 2 | [1] | 1s ² | | Lithium | 3 | TŢ Ţ | 1s ² 2s ¹ | | Beryllium | 4 | [1] | 1s ² 2s ² | | Boron | 5 | | 1s ² 2s ² 2p ¹ | | Carbon | 6 | | 1s ² 2s ² 2p ² | | Nitrogen | 7 | | 1s ² 2s ² 2p ³ | | Oxygen | 8 | | 1s ² 2s ² 2p ⁴ | | Fluorine | 9 | | 1s ² 2s ² 2p ⁵ | | Neon | 10 | | 1s ² 2s ² 2p ⁶ | - Noble gas notation uses noble gas symbols in brackets to shorten inner electron configurations of other elements. - Valence electrons are defined as electrons in the atom's outermost orbitals—those associated with the atom's highest principal energy level. - Electron-dot structure consists of the element's symbol representing the nucleus, surrounded by dots representing the element's valence electrons. ## **Electron Configurations for Elements 11–18** | Element | Atomic
Number | Complete
Electron
Configuration | Electron
Configuration
Using Noble Gas | |------------|------------------|---|--| | Sodium | 11 | 1s ² 2s ² 2p ⁶ 3s ¹ | [Ne]3s1 | | Magnesium | 12 | 1s ² 2s ² 2p ⁶ 3s ² | [Ne]3s ² | | Aluminum | 13 | 1s ² 2s ² 2p ⁶ 3s ² 3p ¹ | [Ne]3s ² 3p ¹ | | Silicon | 14 | 1s ² 2s ² 2p ⁶ 3s ² 3p ² | [Ne]3s ² 3p ² | | Phosphorus | 15 | 1s ² 2s ² 2p ⁶ 3s ² 3p ³ | [Ne]3s ² 3p ³ | | Sulfur | 16 | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁴ | [Ne]3s ² 3p ⁴ | | Chlorine | 17 | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁵ | [Ne]3s ² 3p ⁵ | | Argon | 18 | 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ | [Ne]3s ² 3p ⁶ or [Ar] | - In the ground state, which orbital does an atom's electrons occupy? - **A** The highest available CH - **B** The lowest available - \mathbf{C} The n = 0 orbital - **D** The d suborbital Ground state is the lowest orbital available that's an atom's electrons occupy The electron configuration of an atom is $1s^22s^22p^6$. The number of electrons in the atom is CH **A** 1 В 2 **C** 6 D 10 **→**B \rightarrow D The sum of electron in the electron configuration = 10 - The electron configuration of fluorine F (atomic number = 9) is - **A** $1s^22s^1$ CH - **B** $1s^22s^22p^3$ - $C 1s^22s^22p^5$ - **D** $1s^22s^22p^6$ - $1s^22s^22p^5$ - The right electron configuration is - CH **A** $1s^22s^3$ 11 - **B** $1s^22s^22p^8$ - $C 1s^32s^12p^1$ - **D** $1s^22s^22p^63s^1$ 1s²2s²2p⁶3s¹, s orbital can be filled with 2 e, p orbital can be filled with 6 e →C ## **CHAPTER 4: Quantum Theory & Electron configuration** | 12 | The electronic configuration of an atom an element with atomic number 8 is | 20 The right electronic configuration according to hunds role is | |---------------|---|---| | CH
4 | A 1s ² 2s ² 2p ⁶ B 1s ² 2s ² 2p ⁴ C 1s ² 2s ² 2p ⁵ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | D $1s^22s^22p^63s^1$
$1s^22s^22p^4$, because the sum of electrons = 8 \rightarrow B | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 13
CH
4 | The electronic configuration of Calcium Ca (atomic number = 20) is A 1s ² 2s ² 2p ⁶ 3s ¹ B 1s ² 2s ² 2p ⁵ 3s ³ C 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² | Hund's rule states that single electrons with the same spin must occupy each equal-energy orbital before additional electrons with opposite spins can occupy the same energy level orbitals. →C | | | D 1s22s22p63s23p64s1 1s22s22p63s23p64s2 →C | 21 The right electron dot of Florine F (atomic number is 9) | | 14
CH
4 | Which one of the following is the electronic configuration of atom of a noble gas? A 1s ² 2s ² 2p ⁶ 3s ¹ B 1s ² 2s ² 2p ⁵ 3s ³ C 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ | CH 4 A : F B F C F D F Fluorine has 7 valence electrons in the outer most shell in according to it electron configuration →B 22 Which of the following is NOT one of the | | | D $1s^22s^22p^63s^23p^64s^2$
$1s^22s^22p^63s^23p^6$, because its include 18 e →C | elemental blocks of the periodic table? CH 4 A s-block B d-block C g-block D f-block | | 15
CH
4 | Which one of the following is the electronic configuration of sulfur S. (atomic number of S = 16) A [Ne]3s ¹ B [Ar]4s ² C [Ne]3s ² 4p ⁴ | There are 4 Blocks s, p, d, f 1 The electron configuration for a carbon atom in ground state is (Atomic number =6) Do A 1s²2s²2p³ it? B 1s²2s²2p⁴ | | | D [He] $2s^22p^4$
[Ne] $3s^23p^4$, Ne have 10 e, and the sum \rightarrow C | $\begin{array}{c} \textbf{C} 1s^2 2s^2 2p^6 \\ \textbf{D} 1s^2 2s^2 2p^2 \end{array}$ | | 16
CH
4 | Which one of the following is the electronic configuration of Iron Fe (atomic number of Fe = 26) A [Ar]4s¹3d² B [Ar]4s²3d² C [Ar]4s²3d⁶ D [Ar]2s³3d⁶ [Ne]3s²3p⁴, Ne have 10 e, and the sum →C | 2 The right electron configuration is Do A 1s ² 2s ² 2p ⁷ it? B 1s ¹ 2s ³ 2p ³ C 1s ² 2s ¹ 2p ⁵ D 1s ² 2s ² 2p ⁶ 3s ¹ | | 17
CH
4 | Which one of the following is the electronic configuration of Chromium Cr (Atomic number of Cr = 24) A [Ar]4s²3d⁴ B [Ar]4s³3d³ C [Ar]4s¹3d6 D [Ar]2s¹3d5 | 3 Which one of the following is the electronic configuration of Nickel Ni (Atomic number of Ni = 28) Do A [Ar]4s²3d⁴ it? B [Ar]4s³3d⁵ C [Ar]4s²3d8 D [Ar]2s¹3d9 | | 18 | [Ar]2s¹3d⁵ because is more stable → D Which one of the following is the electronic | 4 The right electron dot of Carbon (Atomic number is 6) | | CH 4 | Which one of the following is the electronic configuration of Copper Cu (Atomic number of Cu = 29) A [Ar]4s ² 3d ⁹ B [Ar]4s ¹ 3d ¹⁰ C [Ar]4s ³ 3d ⁸ D [Ar]2d ² 3d ⁹ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | 19 | C [Ar] $4s^33d^8$ D [Ar] $2s^13d^9$ [Ar] $2s^13d^{10}$ because is more stable \rightarrow B The electron configuration of an element is | 5 The electron configuration of an element is [Ne]3s ² 3p ³ . The atomic number of an element is Do A 5 B 15 | | СН
4 | [Ar] $4s^23d^7$. The atomic number of an element is A 9 B 18 C 29 D 27 The sum of electron in the electron configuration = 27 \rightarrow D | Chapter 4: Do It Answer key 1 2 3 4 5 | D D C D