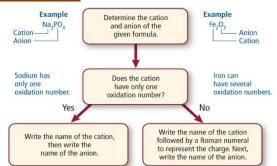
CHAPTER 6: Ionic Bonds and Ionic Compounds

 Part 1: Ioni Ions are formed when atoms gain or lose valence electrons to ach A positively charged ion is called a cation Metals are reactive because they lose valence electrons easily. An anion is a negatively charged ion. A chemical bond is the force that holds two atoms together. The electrostatic force that holds oppositely charged particles to A crystal lattice is the three-dimensional geometric arrangement structure of many minerals An ion in aqueous solution that conducts electricity is an electro Compounds that contain ionic bonds are called ionic compounds Binary ionic compounds contain only two different elements—a Oxidation number, or oxidation state, is the charge of a monator The energy required to separate 1 mol of ions in an ionic compound Lattice energy is directly related to the size of the ions that are b Smaller ions form compounds with more closely spaced ionic clipation is also affected by the charge of the ion. (DIRECT 	nieve a stable octet electron configuration. gether in an ionic compound is called an ionic bond. t of particles, and is responsible for the blyte. a metallic cation and a nonmetallic anion. mic ion. pund is referred to as the lattice energy. bonded. harges and require more energy to separate. (INVERSE)
 Elements with a full octet have which configuration? A Ionic configuration B Halogen configuration C Noble gas configuration D Transition metal configuration Noble gas configuration = Elements with a full octet →C 	 8 Which combination of atoms is most likely to produce a compound with ionic bonds? (Atomic number for H=1, Li=3, N=7, O=8, Al=13) CH A Li and Al B N and O C H and O D Al and O 6 Al classified as metallic element; O classified as non-metallic element, ionic bonds formed between metallic and non-metallic elements →E
 2 When aluminum oxide is formed: CH A Oxygen loses 3e⁻ & aluminium gains 2 e⁻ 6 B Aluminium loses 3e⁻ & oxygen gains 2e⁻ C Aluminium loses 2e⁻ & oxygen gains 3e⁻ D aluminium loses 2e⁻ & oxygen gains 2e⁻ Aluminium (Al) will lose 3 e⁻ because it's arranged in group 13 or 3 A, Oxygen will gain 2 e⁻ because it's arranged in group 16 or 6 A →B 	 9 Ionic bond formation depends on the arrangement of CH A Molecule B Atom 6 C Lattice D Kernel Lattice of the crystalline compound is the arrangement of positive and the negative ions inside a substance. It is dependent on the ease of formation of ionic bonds. →C
 3 What is the electrostatic charge holding two ions together? CH A Covalent bond 6 B Pseudo-noble gas bond C Crystal lattice bond D Ionic bond The electrostatic force that holds oppositely charged particles together in an ionic compound is called an 	 10 As the distance between ions in an ionic bond is shortened, CH A the energy to break the bond decreases. 6 B the electrostatic attraction decreases. C the electrostatic attraction increases. D the ionic bond changes to a metallic bond. As the distance between ions in an ionic bond is Shortened, the electrostatic attraction increases. →0
ionic bond. $\rightarrow D$ 4Cations form when atoms electrons.CHA GainB LoseCChargeD Delocalize6Cations form when atoms lose electrons $\rightarrow B$ 5How many electrons are in a full octet?	 11 What is the repeating pattern of atoms in an ionic solid called? CH A Crystal lattice B Ionic lattice 6 C Energy lattice D ionic bonding A crystal lattice is the three-dimensional geometric arrangement of particles, and is responsible for the structure of many minerals →A
CHA 10B 8C 6D 46Full octet = 8 e ⁻ \rightarrow B6Which atom is most likely to form a 3 ⁺ ion? (Atomic number for Li=3, N=7, O=8, Al=13) \rightarrow CCHA LiB NC OD Al	12Which compound has the higher lattice energy: (Atomic number for Li=3, F=9, Na=11, Mg=12, Al=13)CHALiFBNaF6CMgF2DAlF3
 6 Al, because it has 3 valence electrons →D 7 Which atom is most likely to form a 1⁺ ion? (Atomic number for Li=3, N=7, O=8, Al=13) CH A Li B N C O D Al 6 Li, because it has 1 valence electrons →D 	Lattice energy is also affected by the charge of the ion. (DIRECT) →D 1 Which compound has the higher lattice energy: (Atomic number for, F=9, Na=11, Cl=17, Br=35, I= 53) Do It? A NaF B NaBr C NaCl D NaI


Part 2: Names and Formulas for Ionic Compounds

- A formula unit represents the simplest ratio of the ions involved. Steps of naming ionic compounds

- Chemical nomenclature is a systematic way of naming compounds.
- Name the cation followed by the anion.
- For monatomic cations use the element name.
- For monatomic anions, use the root element name and the suffix -ide.
- To distinguish between different oxidation states of the same element,
- the oxidation state is written in parentheses after the name of the cation. - When the compound contains a polyatomic ion, name the cation followed by the name of the polyatomic ion.

Symbol	Name		Symbol	
H +	Hydrogen ion		F 1	Flue
Li +	Lithium ion		C1 -	Chl
Na+	Sodium ion			
K +	Potassium ion		Br -	Bros
Rb +	Rubidium ion		I *	Iodi
Cs+	Cesium ion		O ²⁻	Oxi
Be ²⁺	Beryllium ion		S 2-	Sulf
Mg ²⁺	Magnesium ion		N ³⁻	Nitr
Ca 2+	Calcium ion		P 3-	Pho
Ba ²⁺	Barium ion	יו	-	THO
A1 3+	Aluminium ion			

F * Fluoride C1 * Chloride Br * Bromide I * Iodide O 2* Oxide	Symbol
Br Bromide I Iodide O 2- Oxide	F 1
I - Iodide O ² - Oxide	C1 -
O ²⁻ Oxide	Br -
O ONDE	I -
S 2- Sulfide	S 2-
N ³⁻ Nitride	N 3-
P 3- Phosphide	P ³⁻

 $Fe_2O_3 = iron(III)$ oxide

Common Polyatomic Ions Ion Name Ion Name NH4⁺ CO3 2-Ammonium Carbonate Nitrite HCO₃ NO₂-Bicarbonate Hypochlorite NO₃ Nitrate C10 SO3 Sulfite C1O₂ Chlorite SO42 Sulfate C1O3 Chlorate C1O4 HSO4 Bisulfate Perchlorate OH -C2H3O2 Acetate Hydroxide CN-Cyanide MnO4 Permanganate PO43-Phosphate Cr2O72-Dichromate HPO4 2-Hydrogen phosphate CrO4 2-Chromate Dihydrogen phosphate O22-Peroxide H₂PO₄⁻

 $Na_{PO_{1}} = sodium phosphate$

Symbol	Systematic name (Stock system)	Classical name	Symbol	Systematic name (Stock system)	Classical name
Cu ¹⁺	Copper (I)	Cuprous	Hg2 ²⁺	Mercury (I)	Mercurous
Cu 2+	Copper (II)	Cupric	Hg ²⁺	Mercury (II)	Mercuric
Fe ²⁺	Iron (II)	Ferrous	Pb ²⁺	Lead (II)	Plumbous
Fe ³⁺	Iron (III)	Ferric	Pb ⁴⁺	Lead (IV)	plumbic
Sn ²⁺	Tin (II)	Stannous	Co ²⁺	Cobalt (II)	Cobaltous
Sn ⁴⁺	Tin (IV)	Stannic	Co ⁴⁺	Cobalt (II)	Cobaltic
Cr ²⁺	Chromium (II)	Chromous	Au +	Gold (I)	Aurous
Cr 3+	Chromium (III)	Chromic	Au ³⁺	Gold (III)	Auric
Mn ²⁺	Manganese (II)	Manganous	Ni ²⁺	Nickel (II)	Nickelous
Mn ³⁺	Manganese (III)	Manganic	Ni ³⁺	Nickel (III)	Nickelic

13 CH 6	The name of NaF isANitrogen fluorineBSodium fluorideCNitrogen fluorideDSodium fluorineBy using ions tables, we will find that the first part Na ⁺ name is Sodium, F ⁻ the second part name is fluoride \rightarrow B	17 CH 6	A Li ₃ C C Li(C	$(O_3)_2$ i ion is Li ⁺ , ca	B D
14 CH 6	The name of CaCl2 isACarbon chlorideBCalcium bromideCCalcium dichlorideDCalcium chlorideBy using ions tables, we will find that the first part Ca ⁺² name is Calcium, Cl ⁻ the second part name is chloride \rightarrow D	18 CH 6	$\begin{array}{c} \mathbf{A} \mathrm{Fe}_2 \mathrm{N} \\ \mathbf{C} \mathrm{Fe} \mathrm{N} \end{array}$	O_3) is Fe ²⁺ , Nitra	B D
15 CH 6	The name of MgSO4 isBMagnesium sulfiteCMagnesium sulfateDMagnesium sulfiteBy using ions tables, we will find that the first part Mg ⁺² name is Magnesium, SO4 ²⁻ the second part name issulfate So the name is Magnesium sulfate. \rightarrow C	2 Do It? 3 Do it?	A Dialu C Alum	_	fate B A e D A
16 CH 6	The name of Ca ₃ (PO ₄) ₂ isACalcium diphosphateBCalcium phosphiteCDicalcium diphosphateDCalcium phosphateBy using ions tables, we will find that the first part Ca ⁺² name is Calcium, PO4 ³⁻ the second part name is phosphate So the name is Calcium phosphate. \rightarrow D		Chapter 1 A	6: Do It An 2 B	swer key 3 D

17	The formula of Lithium carbonate is		
CH	A Li ₃ CO ₃ B Li ₂ CO	D_3	
6	C $\text{Li}(\text{CO}_3)_2$ D $\text{Li}_2(\text{CO}_3)_2$	O ₃) ₃	
	Lithium ion is Li ⁺ , carbonate is CO ₃ , so t	he formula	
	is Li ₂ CO ₃	→B	

18	The formula of Iron (II) nitrate is			
CH	A Fe_2NO_3 B $Fe(NO_3)_2$			
6	C FeNO ₃ D $Fe_2(NO_3)_3$			
	Iron (II) is Fe ²⁺ , Nitrate is NO ₃ , so the formula			
	is $Fe(NO_3)_2 \rightarrow B$			
2	The name of Al ₂ (SO ₄) ₃ is			
Do	A Dialuminium sulfate B Aluminium sulfate			
It?	C Aluminium sulfite D Aluminium disulfate			
3	The formula of Chromium (III) chloride is			
	A $CrCl_2$ B Cr_3Cl_2			
it?	C CrCl D CrCl ₃			

2